Skip to main content

Stone Decay by Plants and Animals

  • Chapter
Stone in Architecture
  • 380 Accesses

Abstract

Plants and animals attack stone by both mechanical and chemical action. Higher plants can affect stone both mechanically and biochemically; bacteria, the lowest kind of life, only attack by chemical means. The biotic decay is very complex and not yet fully understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ansell AD (1969) A comparative study of bivalves which bore mainly by mechanical means. Am Zool 9: 857–868

    Google Scholar 

  • Berthelin J (1983) Microbial weathering processes. In: Krumbein WE (ed) Microbial geochemistry. Blackwell Oxford, pp 233–262

    Google Scholar 

  • Cobb WR (1969) Penetration of CaCO3 substrates by the boring sponge Cliona. Am Zool 9: 783–790

    Google Scholar 

  • Curri SB, Paleni A (1975) Some aspects of the growth of chemolithotrophic microorganisms on the Karnak Temples. The conservation of stone, vol I. In: Rossi-Manarasi R (ed) Proc Int Symp Bologna, 19–21 June, pp 267–279

    Google Scholar 

  • Danin A, Gerson R, Marton K, Garty J (1982) Patterns of limestone and dolomite weathering by lichens and blue—green algae and their paleoclimatic significance. Paleogeogr Paleoclimatol Paleoecol 37: 221–233

    Article  Google Scholar 

  • Dvorak JJ, Mastrolorenzo G (1991) The mechanism of recent vertical crustal movements in Campi Flegrei caldera, southern Italy. Geolog Soc Am Spec Pap 263: 47

    Google Scholar 

  • Evans JW (1986) The role of Penitella penita (Family Pholadidae) as eroders along the Pacific coast of North America. Ecology 49 (1): 156–159

    Article  Google Scholar 

  • Friedmann I (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215: 1045–1052

    Article  Google Scholar 

  • Gill WR, Bolt GH (1955) Pfeffer’s study of the root growth pressures exerted by plants. Agron J 47: 166–168

    Article  Google Scholar 

  • Goeldner PK (1984) Plant life at historic properties. Assoc Presery Technol Bull XVI (3/4): 67–69

    Article  Google Scholar 

  • Golubiir S (1969) A comparative study of bivalves which bore mainly by mechanical means. Am Zool 9: 857–868

    Google Scholar 

  • Golubie S, Perkins RD, Lukas KJ (1975) Boring microorganisms and microborings in carbonate substrates. In: Frey RW (ed) The study of trace fossils. Springer, Berlin Heidelberg New York, pp 2329–2359

    Google Scholar 

  • Grimmer A (1988) Keeping it clean. US Dep Inter Natl Park Sery 34 pp

    Google Scholar 

  • Henderson MEK, Duff RB (1963) The release of metallic and silicate ions from minerals, rocks and soils by fungal activity. J Soil Sci 14 (2): 236–246

    Article  Google Scholar 

  • Iverson WP (1974) Microbial corrosion of iron. In: Microbial iron metabolism. Academic Press, London, pp 475–513

    Google Scholar 

  • Jaton MC (1972) Aspects microbiologiques des alterations des pierres de monuments. Ler Colloq Int sur la Deter de Pierres, 11–16 Sept 1972, LaRochelle, pp 149–154

    Google Scholar 

  • Kauffmann J (1960) Corrosion et protection des pierres calcaires des monuments. Corrosion et Anticorrosion 8 (3): 87–95

    Google Scholar 

  • Keller WD (1957) The principles of chemical weathering. Lucas, Columbia

    Google Scholar 

  • Missouri, 111 pp Lukas KJ (1979) The effects of marine microphytes on carbonate substrata. Scanning Electron Microsc 1979 (II): 447–456

    Google Scholar 

  • Mamillan M (1968) L’alteration et la preservation de pierres dans les monuments historiques. Etude de l’alteration des pierres, vol I. Colloq tenus a Bruxelles le Ferr 1966–1967, pp 65–98, Cons Int des Monuments et des Sites, ICOMOS

    Google Scholar 

  • Millot G, Cogne J et al (1967) La maladie des gres de la Cathedral de Strasbourg. Bull Sery Carte Geol Elsace-Lorraine 20 (3): 131–157

    Google Scholar 

  • Neumann AC (1966) Observation of coastal erosion in Bermuda and measurements of the boring rate of the sponge Cliona lampa. Limnol Oceanogr“1(1): 92–108

    Google Scholar 

  • Pochon J, Jaton D (1967) The role of microbiological agencies in the deterioration of stone. Chem Indust 47: 1587–1589

    Google Scholar 

  • Realini M, Sorlini C, Bassi M (1985) The Certosa of Pavia: A case of biodeterioration. In: Felix G (ed) Vth Int Congr on Deterioration and conservation of stone, Lausanne, 26–27

    Google Scholar 

  • Sept Richardson BA (1973) Control of biological growth. Stone Indust 8 (2): 2–6

    Google Scholar 

  • Schatz A, Cheronis ND, Schatz V, Trelawny GS (1954) Chelation (sequestration) as a biological weathering factor in pedogenesis. Proc Penn Acad Sci XXVIII: 44–51

    Google Scholar 

  • Schmidlin W (1979) Rescuing an architectural wonder. DuPont Magazine Nov/Dec 1979: 1–10

    Google Scholar 

  • Shachak M, Jones CG, Granot Y (1987) Herbivory in rocks and the weathering in a desert. Science 236: 1098–1099

    Article  Google Scholar 

  • Silverman MP, Ehrlich HC (1964) Microbial formation and degradation of minerals. Adv Microbiol 6: 153–206

    Article  Google Scholar 

  • Silverman MP, Munoz EF (1970) Fungal attack on rock: Solubilization and altered infrared spectra. Science 169: 985–987

    Google Scholar 

  • Stolzy LH, Barley KP (1968) Mechanical resistance encountered by root growth habits of plants. Soil Sci 105: 297–301

    Article  Google Scholar 

  • Taylor HM, Ratcliff LF (1969) Root growth pressure of cotton, peas, and peanuts. Agron J 61: 398–402

    Article  Google Scholar 

  • Van der Molen J, Garty J, Aardema B, Krumbein WE (1980) Growth control of algae and Cyanobacteria on historical monuments by a mobile UV unit ( MUVU ). Stud Consery 25: 71–77

    Google Scholar 

  • Viles HA (1987) Blue-green algae and terrestrial limestone weathering on Aldabra Atoll. Earth Surface Processes and Landforms 12: 319–330

    Article  Google Scholar 

  • Voûte C (1969) Indonesia; geological and hydrological problems involved in the preservation of the monument of Borobudur. UNESCO Rep Ser No 1241/BMS RD/CLT, Paris, May 1969, 37 pp

    Google Scholar 

  • Wainwright NM (1986) Lichen removal from an engraved memorial to Walt Whitman. Assoc Presery Technol Bull XVIII (4): 46–51

    Google Scholar 

  • Warme JE (1969) Marine borers in calcareous rock of the Pacific coast. Am Zool 9: 783–790

    Google Scholar 

  • Warme JE (1975) Borings as trace fossils and the process of marine bioerosion. In: Frey RW (ed) The study of trace fossils. Springer Berlin Heidelberg New York, pp 181–227

    Chapter  Google Scholar 

  • Webley DM et al. (1963) The microbiology of rocks and weathered stones. J Soil Sci 14 (1): 102–112

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Winkler, E.M. (1997). Stone Decay by Plants and Animals. In: Stone in Architecture. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10070-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10070-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-10072-1

  • Online ISBN: 978-3-662-10070-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics