Physical Properties of Stone

  • Erhard M. Winkler


Stone is a heterogeneous substance characterized by a wide range of mineral compositions, textures, and rock structures. Consequently, the physical and chemical properties and the resulting durability are quite variable. The suitability of a stone for a given building can be easily tested in the laboratory. Although some tests are expensive and consume considerable amounts of rock material, others are simple, inexpensive, and nondestructive (see App. A).


Compressive Strength Uniaxial Compressive Strength Tunnel Boring Machine Brinell Hardness Stone Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bayly B (1968) Introduction to petrology. Prentice Hall, New York, 371 ppGoogle Scholar
  2. Brace WF (1961) Dependence of fracture strength of rocks on grain size. Proc 4th Symp Rock Mechanics, Pennsylvania State Univ March 30—April 1, 1961, pp 99–103Google Scholar
  3. Brace WF (1964) Brittle fracture of rocks. In: Judd WR (ed) State of stress in the earth’s crust. Elsevier, pp 111–180Google Scholar
  4. Choquette PW, Pray LC (1970) Nomenclature and classification of porosity in sedimentary carbonates. Am Assoc Pet Geol Bull 54 (2): 207–250Google Scholar
  5. Colback PSB, Wiid BL (1965) The influence of moisture content on the compressive strength of rocks. Proc 3rd Can Symp on Rock Mechanics, Toronto, 1965, Mines Branch, Dept of Mines and Technical Surveys, Ottawa, pp 65–83Google Scholar
  6. Conrad H, Sujata HL (1960) Dislocation theory applied to structural design problems in ceramics. Natl Acad Sci, Materials Advisory Board, Dec 1960Google Scholar
  7. Crnkovic B (1982) Nondestructive method in determination of technical properties of natural stones. Durability of Building Materials 1: 35–47Google Scholar
  8. Cullen WC (1963) Solar heating, radiative cooling, and thermal movement — their effect on built-up roofing. Nat Bur Stand, Tech Note 231: 33Google Scholar
  9. Daly RA, Manger GE, Clark SP (1966) Density of rocks. In: Clark SP (ed) Handbook of Physical Constants. Geol Soc Am Mem 97: 19–26Google Scholar
  10. Deere DU (1968) Rock mechanics, geological considerations. In: Stagg KG, Zienkiewicz OC (eds) Rock mechanics in engineering practice. Wiley, London, pp 1–53Google Scholar
  11. Farmer IW (1968) Engineering properties of rocks. Spon, London, 180 ppGoogle Scholar
  12. Felix C (1983) Sandstone linear swelling due to isothermal water sorption. In: Wittmann FH (ed) Werkstoffwissenschaft und Bausanierung. Lack und Chemie 1983: 305–310Google Scholar
  13. Fitzner B (1988) Untersuchungen der Zusammenhänge zwischen dem Hohlraumgefüge von Natursteinen und physikalischen Verwitterungsvorgängen. Mitt Ingenieurgeol Hydrogeol 29: 217Google Scholar
  14. Gaviglio P (1989) Longitudinal waves propagation in a limestome. The relationship between velocity and density. Rock Mech Rock Eng 22 (4): 299–306CrossRefGoogle Scholar
  15. Hardy HR, Jayaraman NI (1971) Hoop-stress loading — a new method of determining the tensile strength of rock. Preprints, 5th Conf Drilling and rock mechanics, Soc Petrol Eng AIME, Jan 1971, Univ Texas, SPE #3218, pp 71–83Google Scholar
  16. Hawkes I, Mellor M (1970) Uniaxial testing in rock mechanics laboratories. Eng Geol 4 (3): 177–285CrossRefGoogle Scholar
  17. Hockman A, Kessler DW (1950) Thermal and moisture expansion studies of some domestic granites. J Res Natl Bur Stand, Res Pap RP 2087, 44: 395–410Google Scholar
  18. Houseknecht DW (1987) Assessing the relative importance of compaction processes and cementation to reduction of porosity in sandstones. Am Assoc Petrol Geol Bull 71 (6): 633–643Google Scholar
  19. Hudec PP (1980) Durability of carbonate rocks as a function of their thermal expansion, water sorption, and mineralogy. ASTM STP 691. In: Sereda PJ, Litvan GG (eds) Am Soc Testing Materials, pp 497–508Google Scholar
  20. Koehler W (1988) Preservation problems of Carrara marble sculptures, Potsdam-Sanssouci (“Radical structural destruction of Carrara marble”). VIth Int Congr on Deterioration and conservation of stone. Proc, Torun, 12–14 Sept, 1988, pp 653–662Google Scholar
  21. Krautkraemer J, Krautkraemer H (1990) Ultrasonic testing of materials, 4th edn. Springer, Berlin Heidelberg New York, 677 ppGoogle Scholar
  22. Mamillan M (1976) Methodes d’essais physiques pour evaluer l’alteration des pierres des monuments. In: Rossi-Manaresi R (ed) Conservation of stone, I. Bologna, June 19–21, 1975, pp 595–634Google Scholar
  23. McColm IJ (1990) Ceramic hardness. Plenum Press, New York, 324 ppCrossRefGoogle Scholar
  24. McGreevey JP (1985) Thermal properties as controls on rock surface temperature maxima, and possible implications for rock weathering. Earth Surface Processes and Landforms 10: 125–136CrossRefGoogle Scholar
  25. McGreevey JP, Smith RJ (1982) Salt weathering in hot deserts: observations on the design of simulation experiments. Geogr Ann 64 A: 161–170Google Scholar
  26. Michalopoulos AP, Triafilidis GE (1976) Influence of water on hardness, strength and compressibility of rocks. Bull Assoc Eng Geol XIII (1): 1–21Google Scholar
  27. Prim P, Wittmann FH (1985) Methode de mesure de l’effet consolidant de produits de traitement de la pierre. In: Félix G (ed) 5th Int Congr on Deterioration and conservation of stone. Lausanne, Sept 25–27, 1985, pp 787–794Google Scholar
  28. Proctor RJ (1970) Performance of tunnel boring machines. Bull Assoc Eng Geol VI(2):105–117 Queisser A, v Platen H, Fürst M (1985) Rebound and ultrasonic investigations of freestones ofGoogle Scholar
  29. Bamberg area, FR Germany. 5th Int Congr on Deterioration and conservation of stone. Lausanne 25–27 Sept Ecole Polytechnique Federal de Lausanne, pp 79–86Google Scholar
  30. Roth DJ, Stang DB, Swickard SM, DeGuire MR (1990) Review and statistical analysis of the ultrasonic velocity method for estimating the porosity fraction in polycrystalline materials. NASA Tech Memo 102501, Lewis Res Cent, Cleveland, OH 44135Google Scholar
  31. Roth ES (1965) Temperature and water content as factors in desert weathering. J Geol 73 (3): 454–468CrossRefGoogle Scholar
  32. Skinner BJ (1966) Thermal expansion. In: Clark SP (ed) Handbook of physical constant. Geol Soc Am Mem 97: 75–96Google Scholar
  33. Tarkoy PJ (1981) Tunnel boring machine performance as a function of local geology. Bull Assoc Eng Geol XVIII (2): 169–186Google Scholar
  34. Tertsch H (1949) Festigkeitserscheinungen der Kristalle. Springer, Wien, 310 ppCrossRefGoogle Scholar
  35. Tetmajer L (1884) Methoden und Resultate der Prüfung natürlicher und künstlicher Bausteine. In: Mitteilungen der Anstalt für Prüfung von Baumaterialien am Eidgen. Polytechnikum in Zürich, No. 1. Commissionsverlag von Meyer und Zeller, Zürich, Switzerland, 59 ppGoogle Scholar
  36. Volkwein A (1982) Zerstörungsfreie Prüfung von Naturwerkstein durch Ultraschall-Schwächungsmessungen. Materialprüfung (Materials Testing) 24 (4): 119–124Google Scholar
  37. Walker RD, Pence HJ, Hazlett WH, Ong WJ (1969) One cycle slow freeze test for evaluation of aggregate performance in frozen concrete. Natl Cooperative Highway Res Progr Rep 65: 21Google Scholar
  38. Winkler EM (1986) A durability index for stone. Bull Assoc Engin Geol XXIII (3): 344–347Google Scholar
  39. Winkler EM, Schneider GJ (1965) Light transmission through structural marble. Am Inst Architects March 1965: 67–68Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Erhard M. Winkler
    • 1
  1. 1.University of Notre DameNotre DameUSA

Personalised recommendations