Modelling AIDS-Epidemics or any venereal disease on random graphs

  • Ph Blanchard
  • G. F. Bolz
  • T. Krüger
Part of the Lecture Notes in Biomathematics book series (LNBM, volume 86)


The aim of this paper is to review and to report on general results dealing with the description of a new mathematical model based on the concept of random graphs. This stochastic model is intended to describe the dynamics of sexually transmitted diseases. For shortness and simplicity we will mainly concentrate on the case of the Human Immuno-Deficiency Virus (HIV) and AIDS. AIDS is a fatal, infectious disease for which there is now no cure, and its sufferers appear to remain infectious for life. Even though at present much of the numerical information needed is not available, the mathematical modelling of transmissions of infection in the context of the AIDS epidemics is nevertheless vital in investigating how changes in the various assumptions and parameter values would affect the course of the epidemic. This can h:lp to clarify what behavioural changes are needed, to test what mterventwn and preventiOn strategies should be pursued and what sort of data should be collected.


Sexual Partner Random Graph Degree Distribution Sexual Contact Epidemic Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1].
    Ph. Blanchard, G. F. Bolz, T. Kruger, Simulation on Random Graphs of the Epidemic Dynamics of Sexually Transmitted Diseases, BiBoS Preprint 291 (1987).Google Scholar
  2. [2].
    Ph. Blanchard, A Stochastic Growth Model on Random Graphs to Understand the Dynamics of AIDS Epidemic,in Stochastic Methods in Mathematics and Physics, Proceedings of the XXIV Karpacz Winter School of Theoretical Physics, Ed. R. Gielerak, W. Karwowski, World Scientific (1989).Google Scholar
  3. [3].
    G. F. Bolz, Simulation on Random Graphs of the Epidemic Dynamics of Sexually Transmitted Diseases - A New Model for the Epidemiology of AIDS, Stochastics, Algebra and Analysis in Classical and Quantum Dynamics, Eds. S. Albeverio, Ph. Blanchard, D. Testard, Mathematics and its Applications, Reidel 1989.Google Scholar
  4. [4].
    Ph. Blanchard, G. F. Bolz, T. Kruger, Mathematical Modelling on Random Graphs of the Spread of Sexually Transmitted Diseases with Emphasis on the HIV-infection, Dynamics and Stochastic Processes, Ed. R. Vilela-Mendes, Lecture Notes in Physics, Springer (1989).Google Scholar
  5. [5].
    Ph. Blanchard, T. Kruger, Spread of AIDS-epidemics: A Discrete Model on Graphs I.Stationary Analysis for Graphs Generated by Independent Matchings, BiBoS Preprint 337 (1988).Google Scholar
  6. [6].
    K. Dietz, The First Epidemic Model: A Historical Note on P.D. En'ko, Austrl. J. Statist. 30A (1988), 56 - 65.Google Scholar
  7. [7].
    R. Ross, The Prevention of Malaria, Murray (1911).Google Scholar
  8. [8].
    N. T. J. Bailey, The Mathematical Theory of Infectious Diseases and Applications, Charles Griffin (1975).Google Scholar
  9. [9].
    J. C. Frauenthal, Mathematical Modelling in Epidemiology, Springer (1980).Google Scholar
  10. [10].
    N. T. J. Bailey, Introduction to the Modelling of Venereal Diseases, J. Math. Biology 8, (1979), 301 - 322.CrossRefGoogle Scholar
  11. [11].
    R. M. May, R. M. Anderson, Transmission Dynamics of HIV Infection, Nature 326 (1987), 137 - 142.CrossRefGoogle Scholar
  12. [12].
    H. W. Hethcot.e, J. A. Yorke, Gonorrhea Transmission Dynamics and Control, Lecture Notes in Biomathematics, Springer 56 (1985).Google Scholar
  13. [13].
    J. Weyer, Ein Mehrgruppenmodell zur Simulation der epidemischen Dynamik von AIDS, AIFO 3 (1988), 154 - 156.Google Scholar
  14. [14].
    R. Durret, Crabgrass, Measles and Gypsy Moths: An Introduction to Modern Probability, Bulletin AMS 18 (1988), 117 - 143.CrossRefGoogle Scholar
  15. [15].
    H. Kesten "Percolation Theory and First-Passage Percolation, The Annals of Probability 15 (1987), 1231 - 1271.CrossRefMathSciNetGoogle Scholar
  16. [16].
    J. M. Hyman, E. A. Stanley, Using Mathematical Models to Understand the AIDS-epidemic, Mathematical Biosciences 90 (1988), 415-473.CrossRefMATHMathSciNetGoogle Scholar
  17. [17]
    D. Dorner, a) Ein Simulationsprogramm fUr die Ausbreitung von AIDS, Projekt Systemdenken DFG 200 5 III 86 b) Addendum zu a), Universitat Bamberg.Google Scholar
  18. [18].
    M. G. Koch, V. v. Weick, AIDS-Spread Simulations and Projections, Projektstudie (Marz 1987 ).Google Scholar
  19. [19].
    S. P. Blythe, C. C. Castillo-Chavez, Like-with-like Preference and Sexual Mixing Models, Preprint (1988).Google Scholar
  20. [20]
    S. A. Colgate, E. A. Stanley, J. M. Hyman, S. P. Layne, C. Qualls, A Behavior Based Model of the Initial Growth of AIDS in the United States, Los Alamos Preprint LA-UR-88-2396.Google Scholar
  21. [21].
    L. Sattenspiel, Population Structure and the Spread of Disease, Human Biology 59 (1987).Google Scholar
  22. [22].
    C. Castillo-Chavez, K. Cook, W. Huang, S. A. Levin, On the Role of Long Incubation Periods in the Dynamics of AIDS, Part 1, J. Math. Bioi. 27 (1989), 373-398.CrossRefMATHGoogle Scholar
  23. [23].
    C. Castillo-Chavez, Effects of Social Mixing by Propagation of the HIV-Infection, Oberwolfach Meeting on "Mathematical Models for Infectious Diseases", ( Februar 1989 ).Google Scholar
  24. [24].
    J. A. Jacquez, C. Simon, The Effect of Contact Pattern in the Spread of AIDS, Oberwolfach Meeting on "Mathematical Models for Infectious Diseases (Februar 1989 ).Google Scholar
  25. [25].
    K. Dietz, On the Transmission Dynamics of HIV, Mathematical Biosciences 90 (1988), 397-414.CrossRefMATHMathSciNetGoogle Scholar
  26. [26].
    K. Dietz, The Dynamics of Spread of HIV Infection in the Heterosexual Population, Statistical Analysis and Mathematical Modelling of AIDS, Eds. J. C. Jager and E. J. Ruitenberg, Oxford University Press 1988.Google Scholar
  27. [27].
    K. Dietz, K. P. Hadeler, Epidemiological Models for Sexually Transmitted Diseases, J. Math. Biol. 26 (1986), 1-25.CrossRefMathSciNetGoogle Scholar
  28. [28].
    B. Bollobas, Random Graphs, Academic Press (1985).Google Scholar
  29. [29].
    E. Palmer, Graphical Evolution, Wiley 1985.Google Scholar
  30. [30].
    Ph. Blanchard, T. Kruger, Critical Parameters for Sexually Transmitted Diseases, Preprint BiBoS (1989), Universitat Bielefeld.Google Scholar
  31. [31].
    G. F. Bolz, T. Kruger, Ph. Blanchard, Simulating the Epidemic Dynamics of HIV-Infection Using Stochastic Processes over Random Graphs, IMA-Conference "The Mathematical Theory of the Dynamics of Biological Systems", Keble College, Oxford, (July 1989).Google Scholar
  32. [32].
    I. B. Gertbakh, Epidemic Process on a Random Graph: Some Preliminary Results, J. Appl. Prob. 14 (1977), 427.CrossRefGoogle Scholar
  33. [33].
    A. Bender, E. R. Canfield, The Asymptotic Number of Labelled Graphs with Given Degree Sequences, J. Combinatorial Theory 24A (1978), 296-307.CrossRefMATHMathSciNetGoogle Scholar
  34. [34].
    S. A. Colgate, E. A. Stanley, J. M. Hyman, C. R. Qualls, S. P. Layne, AIDS and a Risk-based Model, Los Alamos Science 18 (Fall 1989 ).Google Scholar
  35. [35].
    R. M. Anderson, The Epidemiology of HIV Infections: Variable Incubation plus Infectious Periods and Heterogeneity in Sexual Behaviour, J. Royal Stat. Soc. A151 (1988), 66-93.CrossRefMATHGoogle Scholar
  36. [36].
    J. D. Murray, Mathematical Biology, Biomathematics Texts, Springer (1989).Google Scholar
  37. [37].
    L. Montagnier, W. Rozenbaum, J. C. Gluckman, SIDA et Infection par VIH, Medecine-Sciences, Flammarion (1989).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Ph Blanchard
    • 1
  • G. F. Bolz
    • 1
  • T. Krüger
    • 1
  1. 1.Theoretische Physik and BiBoSUniversität BielefeldBielefeld 1Deutschland

Personalised recommendations