• Stefan Heinz


Large Eddy Simulation Direct Numerical Simulation Diffusion Flame Turbulent Combustion Passive Scalar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramowitz, M. & Stegun, I. A. 1984 Pocketbook of Mathematical Functions. Verlag Harri Deutsch, Thun, Frankfurt/Main.MATHGoogle Scholar
  2. Adumitroaie, V., Ristorcelli, J. R. & Taulbee, D. B. 1999 Progress in FavréReynolds Stress Closures for Compressible Flows. Phys. Fluids 11, 2696–2719.Google Scholar
  3. Alexeev, B. V. 1994 The Generalized Boltzmann Equation, Generalized Hydrodynamic Equations and their Application. Phil. Trans. R. Soc. London A 449, 417–443.Google Scholar
  4. Antonia, R. A., Teitel, M., Kim, J. & Browne, L. W. B. 1992 Low-Reynolds Number Effects in a Fully Developed Channel Flow. J. Fluid Mech. 236, 579–605.ADSCrossRefGoogle Scholar
  5. Baldyga, J. & Bourne, J. R. 1999 Turbulent Mixing and Chemical Reactions. John Wiley & Sons, Chichester, New York, Weinheim, Brisbane, Singapore, Toronto.Google Scholar
  6. Baurle, R. A. & Girimaji, S. S. 1999 An Assumed PDF Turbulence-Chemistry Closure with Temperature-Composition Correlations. In: 37th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 99–0928, Reno, NV.Google Scholar
  7. Bird, G. A. 1994 Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon Press, Oxford.Google Scholar
  8. Blaisdell, G. A., Mansour, N. N. & Reynolds, W. C. 1993 Compressibility Effects on the Growth and Structure of Homogeneous Turbulent Shear Flow. J. Fluid Mech. 256, 443–485.MathSciNetADSMATHCrossRefGoogle Scholar
  9. Canuto, V. M. 1992 Turbulent Convection with Overshooting: Reynolds Stress Approach. Astrophys. J. 392, 218–232.Google Scholar
  10. Canuto, V. M., Minotti, F., Ronchi, C., Ypma, R. M. & Zeman, O. 1994 Second-Order Closure PBL Model with New Third-Order Moments: Comparison with LES Data. J. Atmos. Sci. 51, 1605–1618.Google Scholar
  11. Cercignani, C. 1988 The Boltzmann Equation and its Application. Springer-Verlag, New York, Berlin, Heidelberg, London, Paris, Tokyo.Google Scholar
  12. Chassaing, P., Antonia, R. A., Anselmet, F., Joly, L. & Sarkar, S. 2002 Variable Density Fluid Turbulence. Fluid Mechanics and its Applications 69, Kluwer Academic Publishers, Dordrecht, Boston, London.Google Scholar
  13. Clark, R. A., Ferziger, J. H. & Reynolds, W. C. 1979 Evaluation of Subgrid-Scale Models using an Accurately Simulated Turbulent Flow. J. Fluid Mech. 91, 1–16.ADSMATHCrossRefGoogle Scholar
  14. Colucci, P. J., Jaberi, F. A., Givi, P. & Pope, S. B. 1998 Filtered Density Function for Large Eddy Simulations of Turbulent Reactive Flows. Phys. Fluids 10, 499–515.Google Scholar
  15. Craft, T. J., Kidger, J. W. & Launder, B. E. 1997 Importance of Third-Moment Modeling in Horizontal, Stably-Stratified Flows. Proceedings of the 11th Symposium on Turbulent Shear Flows, Grenoble, France, 2013–2018.Google Scholar
  16. Craft, T. J. 1998 Developments in a Low-Reynolds Number Second-Moment Closure and its Application to Separating and Reattaching Flows. Int. J. Heat and Fluid Flow 19, 541–548.Google Scholar
  17. Delarue, B. J. & Pope, S. B. 1997 Application of PDF Methods to Compressible Turbulent Flows. Phys. Fluids 9, 2704–2715.Google Scholar
  18. Delarue, B. J. & Pope, S. B. 1998 Calculation of Subsonic and Supersonic Turbulent Reacting Mixing Layers Using Probability Density Function Methods. Phys. Fluids 10, 487–498.Google Scholar
  19. Dreeben, T. D. & Pope, S. B. 1997 Wall-Function Treatment in PDF Methods for Turbulent Flows. Phys. Fluids 9, 2692–2703.Google Scholar
  20. Du, S., Wilson, J. D. & Yee, E. 1994a Probability Density Functions for Velocity in the Convective Boundary Layer, and Implied Trajectory Models. Atmos. Environ. 28, 1211–17.Google Scholar
  21. Du, S., Wilson, J. D. & Yee, E. 1994b On the Moments Approximation Method for Constructing a Lagrangian Stochastic Model. Bound.-Layer Meteorol. 40, 273–292.ADSCrossRefGoogle Scholar
  22. Du, S., Sawford, B. L., Wilson, J. D. & Wilson, D. J. 1995 Estimation of the Kolmogorov Constant (C0) for the Lagrangian Structure Function, using a Second-Order Lagrangian Model of Grid Turbulence. Phys. Fluids 7, 3083–3090.Google Scholar
  23. Durbin, P. A. & Speziale, C. G. 1994 Realizability of Second-Moment Closure via Stochastic Analysis. J. Fluid Mech. 280, 395–407.ADSMATHCrossRefGoogle Scholar
  24. Durbin, P. A. & Petterson, B. A. 2001 Statistical Theory and Modeling for Turbulent Flows. John Wiley & Sons, Chichester, New York, Weinheim, Brisbane, Singapore, Toronto.Google Scholar
  25. Eifler, P. & Kollmann, W. 1993 PDF Prediction of Supersonic Hydrogen Flames. In: 3 1 th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 93–0448, Reno, NV.Google Scholar
  26. Einstein, A. 1905 Über die von der molekular-kinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. ( Leipzig ) 17, 549–560.Google Scholar
  27. Esposito, R. Lebowitz, J. L. & Marra, R. 1999 On the Derivation of Hydrodynamics from the Boltzmann Equation. Phys. Fluids 11, 2354–2366.Google Scholar
  28. Eswaran, V. & Pope, S. B. 1988 Direct Numerical Simulations of the Turbulent Mixing of a Passive Scalar. Phys. Fluids 31, 506–520.Google Scholar
  29. FLUENT Inc. 2003 FLUENT 6.1 User’s Guide. Lebanon, New Hampshire, USA. Fokker, A. D. 1914 Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld. Ann. Physik 43, 810–820.Google Scholar
  30. Forkel, H. & Janicka, J. 2000 Large-Eddy Simulation of a Turbulent Hydrogen Diffusion Flame. Flow, Turb. and Combust. 65, 163–175.Google Scholar
  31. Fox, R. O. 1992 The Fokker-Planck Closure for Turbulent Molecular Mixing: Passive Scalars. Phys. Fluids A 4, 1230–1244.Google Scholar
  32. Fox, R. O. 1994 Improved Fokker-Planck Model for the Joint Scalar, Scalar Gradient PDF. Phys. Fluids 6, 334–348.Google Scholar
  33. Fox, R. O. 1996 On Velocity-Conditioned Scalar Mixing in Homogeneous Turbulence. Phys. Fluids 8, 2678–2691.Google Scholar
  34. Freund, J. B. 1997 Compressibility Effects in a Turbulent Annular Mixing Layer. PhD thesis, Mechanical Engineering Department, Stanford University.Google Scholar
  35. Freund, J. B., Lele, S. K. & Moin, P. 2000a Compressibility Effects in a Turbulent Annular Mixing Layer. Part 1. Turbulence and Growth Rate. J. Fluid Mech. 421, 229–267.Google Scholar
  36. Freund, J. B., Moin, P. & Lele, S. K., 2000b Compressibility Effects in a Turbulent Annular Mixing Layer. Part 2. Mixing of a Passive Scalar. J. Fluid Mech. 421, 269–292.Google Scholar
  37. Friedrich, R. & Bertolotti, F. P. 1997 Compressibility Effects due to Turbulent Fluctuations. Appl. Sci. Res. 57, 165–194.Google Scholar
  38. Friedrich, R. 1999 Modeling of Turbulence in Compressible Flows. In: Transition, Turbulence and Combustion Modeling, edited by Hanifi, A., Alfredsson, P. H., Johansson, A. V. & Henningson, D. S., Kluwer Academic Publishers (ERCOFTAC Series), Dordrecht, Boston, London, 243–348.Google Scholar
  39. Frisch, U. 1995 Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press, Cambridge.Google Scholar
  40. Gao, F. & O’Brien, E. E. 1993 A Large-Eddy Simulation Scheme for Turbulent Reacting Flows. Phys. Fluids A5, 1282–1284.Google Scholar
  41. Gardiner, C. W. 1983 Handbook of Statistical Methods. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo.Google Scholar
  42. Gatski, T. B. & Speziale, C. G. 1993 On Explicit Algebraic Stress Models for Complex Turbulent Flows. J. Fluid Mech. 254, 59–78.MathSciNetADSMATHCrossRefGoogle Scholar
  43. Gerlinger, P., Möbus, H. & Brüggemann, D. 2001 An Implicit Multigrid Method for Turbulent Combustion. J. Comp. Phys. 167, 247–276.Google Scholar
  44. Germano, M., Piomelli, U., Moin, P. & Cabot, W. H. 1991 A Dynamic Subgridscale Eddy Viscosity Model. Phys. Fluids A3, 1760–1765.Google Scholar
  45. Germano, M. 1999 From RANS to DNS: Towards a Bridging Model. In: Direct and Large Eddy Simulation III, edited by Voke, P. R., Sandham, N. D. & Kleiser, L., Kluwer Academic Publishers, Dordrecht, 225–236.Google Scholar
  46. Gerz, T., Schumann, U. & Elghobashi, S. E. 1989 Direct Numerical Simulation of Stratified Homogeneous Turbulent Shear Flows. J. Fluid Mech. 200, 563–594.ADSMATHCrossRefGoogle Scholar
  47. Gicquel, L. Y. M., Givi, P., Jaberi, F. A. & Pope, S. B. 2002 Velocity Filtered Density Function for Large Eddy Simulation of Turbulent Flows. Phys. Fluids 14, 1196–1213.Google Scholar
  48. Givi, P. 1989 Model-free Simulations of Turbulent Reactive Flows. Prog. Energy Combust. Sci. 15, 1–107.Google Scholar
  49. Grabert, H. 1982 Projection Operator Technique in Nonequilibrium Statistical Mechanics. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo.Google Scholar
  50. Heinz, S. & Schaller, E. 1996 On the Influence of Non-Gaussianity on Turbulent Transport. Bound.-Layer Meteorol. 81, 147–166.ADSCrossRefGoogle Scholar
  51. Heinz, S. 1997 Nonlinear Lagrangian Equations for Turbulent Motion and Buoyancy in Inhomogeneous Flows. Phys. Fluids 9, 703–716.Google Scholar
  52. Heinz, S. 1998a Time Scales of Stratified Turbulent Flows and Relations between Second-Order Closure Parameters and Flow Numbers. Phys. Fluids 10, 958–973.Google Scholar
  53. Heinz, S. 1998b Connections between Lagrangian Stochastic Models and the Closure Theory of Turbulence for Stratified Flows. Int. J. Heat and Fluid Flow 19, 193–200.Google Scholar
  54. Heinz, S. & van Dop, H. 1999 Buoyant Plume Rise described by a Lagrangian Turbulence Model. Atmos. Environ. 33, 2031–2043.Google Scholar
  55. Heinz, S. & Roekaerts, D. 2001 Reynolds Number Effects on Mixing and Reaction in a Turbulent Pipe Flow. Chem. Eng. Sci. 56, 3197–3210.Google Scholar
  56. Heinz, S. 2002 On the Kolmogorov Constant in Stochastic Turbulence Models. Phys. Fluids 14, 4095–4098.Google Scholar
  57. Heinz, S. 2003a On Fokker-Planck Equations for Turbulent Reacting Flows. Part 1. Probability Density Function for Reynolds-averaged Navier-Stokes Equations. Flow, Turb. and Combust. (in press).Google Scholar
  58. Heinz, S. 2003b On Fokker-Planck Equations for Turbulent Reacting Flows. Part 2. Filter Density Function for Large Eddy Simulation. Flow, Turb. and Combust. (in press).Google Scholar
  59. Hinz, A., Hassel, E. P. & Janicka, J. 1999 Numerical Simulation of Turbulent Non-Equilibrium Methane-Air Jet Flames using Monte Carlo PDF Method. In: Turbulence and Shear Flow-1, edited by S. Banarjee & J. K. Eaton, Begell House Inc., New York, Wallingford, 333–338.Google Scholar
  60. Holtslag, A. A. M. & Moeng, C-H. 1991 Eddy Diffusivity and Countergradient Transport in the Convective Atmospheric Boundary-Layer. J. Atm. Sci. 48, 1690–1698.Google Scholar
  61. Hsu, A. T., Tsai, Y-L. P. & Raju, M. S. 1994 Probability Density Function Approach for Compressible Turbulent Reacting Flows. AIAA J. 32, 1407–1415.ADSCrossRefGoogle Scholar
  62. Ilyushin, B. B. & Kurbatski, A. F. 1997 Modeling of Turbulent Transport in PBL with Third-Order Moments. Proceedings of the 11th Symposium on Turbulent Shear Flows, Grenoble, France, 2019–2024.Google Scholar
  63. Jaberi, F. A., Colucci, P. J., James, S., Givi, P. & Pope, S. B. 1999 Filtered Mass Density Function for Large-Eddy Simulation of Turbulent Reacting Flows. J. Fluid Mech. 401, 85–121.ADSMATHCrossRefGoogle Scholar
  64. Jaynes, E. T. 1957 Information Theory and Statistical Mechanics. Phys. Rev. 106, 620–630.Google Scholar
  65. Jenny, P., Pope, S. B., Muradoglu, M. & Caughey, D. A. 2001a A Hybrid Algorithm for the Joint PDF Equation of Turbulent Reactive Flows. J. Comput. Phys. 166, 218–252.Google Scholar
  66. Jenny, P., Muradoglu, M., Liu, K., Pope, S. B. & Caughey, D. A. 2001b PDF Simulations of a Bluff-Body Stabilized Flow. J. Comput. Phys. 169, 1–23.Google Scholar
  67. Juneja, A. & Pope, S. B. 1996 A DNS Study of Turbulent Mixing of two Passive Scalars. Phys. Fluids 8, 2161–2184.Google Scholar
  68. Kaltenbach, H.-J., Gerz, T. & Schumann, U. 1994 Large-Eddy Simulation of Homogeneous Turbulence and Diffusion in Stably Stratified Flows. J. Fluid Mech. 280, 1–40.ADSMATHCrossRefGoogle Scholar
  69. Kassinos, S., Reynolds, W. C. & Rogers, M. M. 2001 One-Point Turbulence Structure Tensors. J. Fluid Mech. 428, 213–248.MathSciNetADSMATHCrossRefGoogle Scholar
  70. Kawamura, H., Sasaki, J. & Kobayashi, K. 1995 Budget and Modeling of Triple Moment Velocity Correlations in a Turbulent Channel Flow Based on DNS. Proceedings of the 10th Symposium on Turbulent Shear Flows, Pennsylvania State University, 2613–2618.Google Scholar
  71. Kerstein, A. R. 1999 One-Dimensional Turbulence: Model Formulation and Application to Homogeneous Turbulence, Shear Flows, and Buoyant Stratified Flows. J. Fluid Mech. 392, 277–334.Google Scholar
  72. Kloeden, P. E. & Platen, E. 1992 Numerical Solution of Stochastic Differential Equations. Applications of Mathematics 23 ( Stochastic Modeling and Applied Probability), Springer-Verlag, Berlin.Google Scholar
  73. Kollmann, W. 1990 The PDF Approach to Turbulent Flow. Theoretical and Computational Fluid Dynamics 1, 249–285.ADSMATHCrossRefGoogle Scholar
  74. Kolmogorov, A. N. 1941 The local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers. Dokl. Akad. Nauk SSSR 30, 299–303 (in Russian).Google Scholar
  75. Kosovié B. 1997 Subgrid-scale Modeling for the Large-Eddy Simulation of High-Reynolds Number Boundary Layers. J. Fluid Mech. 336, 151–182.ADSCrossRefGoogle Scholar
  76. Kramers, H. A. 1940 Brownian Motion in a Field of Force and the Diffusion Model of Chemical Reactions. Physica 7, 284–304.MathSciNetADSMATHCrossRefGoogle Scholar
  77. Krieger, G., Hassel, E. P., Janicka, J. & Chen, J.-Y. 1997 Monte Carlo and Presumed PDF Modeling of Turbulent Hydrogen-Nitrogen Diffusion Flames. In: Turbulence, Heat and Mass Transfer 2, edited by K. Hanjalic & T. W. J. Peeters, Delft University Press, 695–702.Google Scholar
  78. Kuo, K. K. 1986 Principles of Combustion. Wiley Interscience, New York, Chichester, Brisbane, Toronto, Singapore.Google Scholar
  79. Landau, L. D. & Lifshitz, E. M. 1963 Fluid Mechanics. Second Edition, Pergamon Press, Oxford, London, Paris, Frankfurt.MATHGoogle Scholar
  80. Langevin, P. 1908 Sur la théorie du mouvement Brownien. Comptes Rendus Acad. Sci., Paris 146, 530–533.Google Scholar
  81. Launder, B. E. 1990 Phenomenological Modeling: Present and Future. In: Wither Turbulence? Turbulence at the Crossroads, edited by Lumley, J. L., Springer-Verlag, Berlin, 439–485.CrossRefGoogle Scholar
  82. Lebowitz, J. L. & Bergmann, P. G. 1957 Irreversible Gibbsian Ensembles. Ann. Phys. ( New York ) 1, 1–23.Google Scholar
  83. Lele, S. K. 1994 Compressibility Effects on Turbulence. Ann. Rev. Fluid Mech. 26, 211–154.Google Scholar
  84. Leonard, A. 1997 Large-Eddy Simulation of Chaotic Convection and Beyond. In: 35th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 97–0204, Reno, NV, 1–8.Google Scholar
  85. Levermore, C. D., Morokoff, W. J. & Nadiga, B. T. 1998 Moment Realizability and the Validity of the Navier-Stokes Equations for Rarefied Gas Dynamics. Phys. Fluids 12, 3214–3226.Google Scholar
  86. Lilly, D. K. 1967 The Representation of Small-scale Turbulence in Numerical Simulation of Experiments. In: Proc. IBM Scientific Computing Symp. on Environmental Sciences, edited by Goldstine, H. H., Yorktown Heights, NY, 195–210.Google Scholar
  87. Lilly, D. K. 1992 A Proposed Modification of the Germano Subgrid-scale Closure Method. Phys. Fluids A4, 633–635.Google Scholar
  88. Lindenberg, K. & West, J. W. 1990 The Nonequilibrium Statistical Mechanics of Open and Closed System. VHC Publishers, Inc., New York, Weinheim, Cambridge.Google Scholar
  89. Liu, S., Menevau, C. & Katz, J. 1994 On the Properties of Similarity Subgrid-scale Models as Deduced from Measurements in a Turbulent Jet. J. Fluid Mech. 275, 83–119.ADSCrossRefGoogle Scholar
  90. Luhar, A. K., Hibberd, M. F. & Hurley, P. J. 1996 Comparison of Closure Schemes used to specify the Velocity PDF in Lagrangian Stochastic Dispersion Models for Convective Conditions. Atmos. Environ. 30, 1407–1418.Google Scholar
  91. Lumley, J. L. 1978 Computational Modeling of Turbulent Flows. Adv. in Applied Mech. 18, 123–175.Google Scholar
  92. Madnia, C. K. & Givi, P. 1993 Direct Numerical Simulation and Large Eddy Simulation of Reacting Homogeneous Turbulence. In: Large Eddy Simulations of Complex Engineering and Geophysical Flows, edited by Galperin, B. & Orszag, S. A., Cambridge University Press, Cambridge, 315–346.Google Scholar
  93. Marcienkiewicz, J. 1939 Sur une propriété de la loi de Gauss. Math. Z. 44, 612–618.Google Scholar
  94. Menevau, C. & Katz, J. 2000 Scale-Invariance and Turbulence Models for Large-Eddy Simulation. Annu. Rev. Fluid Mech. 32, 1–32.Google Scholar
  95. Minier, J.-P. & Peirano, E. 2001 The PDF Approach to Turbulent Polydispersed Two-phase Flows. Physics Reports 352, 1–214.MathSciNetADSMATHCrossRefGoogle Scholar
  96. Möbus, H., Gerlinger, P. & Brüggemann, D. 1998 Efficient Methods for Particle Temperature Calculations in Monte Carlo PDF Methods. ECCOMAS 98, John Wiley & Sons Ltd., 162–168.Google Scholar
  97. Möbus, H., Gerlinger, P. & Brüggemann, D. 1999 Monte Carlo PDF Simulation of Compressible Turbulent Diffusion Flames Using Detailed Chemical Kinetics. In: 37th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 99–0198, Reno, NV.Google Scholar
  98. Moin, P. & Mahesh, K. 1998 Direct Numerical Simulation: A Tool for Turbulence Research. Annu. Rev. Fluid Mech. 30, 539–578.Google Scholar
  99. Monin, A. S. & Yaglom, A. M. 1971 Statistical Fluid Mechanics: Mechanics of Turbulence, Volume 1, Cambridge, MA: MIT Press.Google Scholar
  100. Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics: Mechanics of Turbulence, Volume 2, Cambridge, MA: MIT Press.Google Scholar
  101. Moser, R. D., Kim, J. & Mansour, N. N. 1999 Direct Numerical Simulation of Turbulent Channel Flow up to Rey = 590. Phys. Fluids 11, 943–945.Google Scholar
  102. Moyal, J. E. 1949 Stochastic Processes and Statistical Physics. J. Roy. Stat. Soc. ( London) B 11, 150–210.Google Scholar
  103. Muradoglu, M., Jenny, P., Pope, S. B. & Caughey, D. A. 1999 A Consistent Hybrid Finite-Volume/Particle Method for the PDF Equations of Turbulent Reactive Flows. J. Comput. Phys. 154, 342–371.Google Scholar
  104. Muradoglu, M., Pope, S. B. & Caughey, D. A. 2001 The Hybrid Method for the PDF Equations of Turbulent Reactive Flows: Consistency Conditions and Correction Algorithms. J. Comput. Phys. 172, 841–878.Google Scholar
  105. Nooren, P. A., Wouters, H. A., Peeters, T. W. J. & Roekaerts, D. 1997 Monte Carlo PDF Modeling of a Turbulent Natural-Gas Diffusion Flame. Combustion Theory and Modeling 1, 79–96.ADSMATHCrossRefGoogle Scholar
  106. Nooren, P. A. 1998 Stochastic Modeling of Turbulent Natural-Gas Flames. PhD thesis, TU Delft.Google Scholar
  107. Overholt, M. R. & Pope, S. B. 1996 Direct Numerical Simulation of a Passive Scalar with Imposed Mean Gradient in Isotropic Turbulence. Phys. Fluids 8, 3128–3148.Google Scholar
  108. Pantano, C. & Sarkar, S. 2002 A Study of Compressibility Effects in the High-Speed Turbulent Shear Layer using Direct Simulation. J. Fluid Mech. 451, 329–371.ADSMATHCrossRefGoogle Scholar
  109. Pawula, R. F. 1967 Approximation of Linear Boltzmann Equation by Fokker-Planck Equation. Phys. Rev. 162, 186–188.Google Scholar
  110. Peltier, L.J., Zajaczkowski, F. J. & Wyngaard, J. C. 2000 A Hybrid RANS/LES Approach to Large-Eddy Simulation of High-Reynolds-Number Wall-Bounded Turbulence. Proceedings of the ASME FEDSM’00: ASME 2000 Fluids Engineering Division Summer Meeting, Boston, Massachusetts, FEDSM2000–11177.Google Scholar
  111. Peters, N. 2001 Turbulent Combustion. Cambridge University Press, Cambridge. Pierce, C. & Moin, P. 1998 A Dynamic Model for Subgrid-Scale Variance and Dissipation Rate of a Conserved Scalar. Phys. Fluids 10, 3041–3044.Google Scholar
  112. Piomelli, U., Cabot, W. H., Moin, P. & Lee, S. 1991 Subgrid-scale Backscatter in Turbulent and Transitional Flows. Phys. Fluids A3, 1766–1771.Google Scholar
  113. Piomelli, U. 1999 Large-Eddy Simulation: Achievements and Challenges. Prog. Aerosp. Sci. 35, 335–362.Google Scholar
  114. Piquet, J. 1999 Turbulent Flows. Models and Physics. Springer-Verlag, Berlin, Heidelberg, New York.Google Scholar
  115. Planck, M. 1917 Uber einen Satz der statistischen Dynamik and seine Erweiterung in der Quantentheorie. Sitzber. Preuß. Akad. Wiss., 324–341.Google Scholar
  116. Pope, S. B. 1975 A More General Effective Viscosity Hypothesis. J. Fluid Mech. 72, 331–340.ADSMATHCrossRefGoogle Scholar
  117. Pope, S. B. 1985 PDF Methods for Turbulent Reactive Flows. Prog. Energy Combust. Sci. 11, 119–192.Google Scholar
  118. Pope, S. B. 1990 Computations of Turbulent Combustions: Progress and Challenges. 23rd Symposium ( International) on Combustion, The Combustion Institute, 591–612.Google Scholar
  119. Pope, S. B. 1994a On the Relationship between Stochastic Lagrangian Models of Turbulence and Second-Moment Closures. Phys. Fluids 6, 973–985.Google Scholar
  120. Pope, S. B. 1994b A Fortran Code to solve the Modeled Joint PDF Equations for Two-dimensional Recirculating Flows. Cornell University, unpublished.Google Scholar
  121. Pope, S. B. 1998 The Vanishing Effect of Molecular Diffusivity on Turbulent Dispersion: Implications for Turbulent Mixing and the Scalar Flux. J. Fluid Mech. 359, 299–312.Google Scholar
  122. Pope, S. B. 1999 A Perspective on Turbulence Modeling. In: Modeling Complex Turbulent Flows, edited by Salas, M. D., Hefner, J. N. & Sakell, L., Kluwer, 53–67.Google Scholar
  123. Pope, S. B. 2000 Turbulent Flows. Cambridge University Press, Cambridge.MATHCrossRefGoogle Scholar
  124. Pope, S. B. 2002 A Stochastic Lagrangian Model for Acceleration in Turbulent Flows. Phys. Fluids 14, 2360–2375.Google Scholar
  125. Repp, S., Sadiki, A., Schneider, C., Hinz, A., Landenfeld, T. & Janicka, J. 2002 Prediction of Swirling Confined Diffusion Flame with a Monte Carlo and a Presumed-PDF-Model. Int. J. Heat Mass Trans. 45, 1271–1285.Google Scholar
  126. Réveillon, J. & Vervisch, L. 1998 Subgrid Scale Turbulent Micromixing: Dynamic Approach. AIAA J. 36, 336–341.Google Scholar
  127. Richardson, L. F. 1922 Weather Prediction by Numerical Process. Cambridge University Press. Cambridge.MATHGoogle Scholar
  128. Risken, H. 1984 The Fokker-Planck Equation. Springer-Verlag, Berlin, Heidelberg, New York.Google Scholar
  129. Roekaerts, D. 1991 Use of a Monte Carlo PDF Method in a Study of the Influence of Turbulent Fluctuations on Selectivity in a Jet-stirred Reactor. Appl. Sci. Res. 48, 271–300.Google Scholar
  130. Rogers, M. M., Mansour, N. N. & Reynolds, W. C. 1989 An Algebraic Model for the Turbulent Flux of a Passive Scalar. J. Fluid Mech. 203, 77–101.ADSCrossRefGoogle Scholar
  131. Sagaut, P. 2002 Large Eddy Simulation for Incompressible Flows. Second Edition, Springer-Verlag, Berlin, Heidelberg, New York.MATHGoogle Scholar
  132. Sarkar, S. 1995 The Stabilizing Effect of Compressibility in Turbulent Shear Flow. J. Fluid Mech. 282, 163–186.ADSMATHCrossRefGoogle Scholar
  133. Sawford, B. L. 1991 Reynolds Number Effects in Lagrangian Stochastic Models of Turbulent Dispersion. Phys. Fluids A3, 1577–1586.Google Scholar
  134. Sawford, B. L. 1993 Recent Developments in the Lagrangian Stochastic Theory of Turbulent Dispersion. Bound.-Layer Meteorol. 62, 197–215.ADSCrossRefGoogle Scholar
  135. Sawford, B. L. 1999 Rotation of Lagrangian Stochastic Models of Turbulent Dispersion. Bound.-Layer Meteorol. 93, 411–424.ADSCrossRefGoogle Scholar
  136. Sawford, B. L. & Yeung, P. K. 2001 Lagrangian Statistics in Uniform Shear Flow: Direct Numerical Simulation and Lagrangian Stochastic Models. Phys. Fluids 13, 2627–2634.Google Scholar
  137. Shannon, C. H. 1948 A Mathematical Theory of Communication. Bell. System Tech. J. 27, 379–423.Google Scholar
  138. Schumann, U. 1987 The Countergradient Heat Flux in Turbulent Stratified Flows. Nucl. Eng. Design 100, 255–262.Google Scholar
  139. Speziale, C. G. & Xu, X. 1996 Towards the Development of Second-Order Closure Models for Nonequilibrium Turbulent Flows. Int. J. Heat and Fluid Flow 17, 238–244.Google Scholar
  140. Speziale, C. G. 1998 Turbulence Modeling for Time-Dependent RANS and VLES: A Review. AIAA J. 36, 173–184.Google Scholar
  141. Sreenivasan, K. R. 1995 On the Universality of the Kolmogorov Constant. Phys. Fluids 7, 2778–2784.Google Scholar
  142. Subramaniam, S. & Pope, S. B. 1998 A Mixing Model for Turbulent Reactive Flows based on Euclidean Minimum Spanning Trees. Combust. Flame 115, 487–514.Google Scholar
  143. Taylor, G. I. 1921 Diffusion by Continuous Movements. Proc. Lond. Math. Soc. 20, 196–212.Google Scholar
  144. Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. MIT Press. Thomson, D. J. 1987 Criteria for the Selection of Stochastic Models of Particle Trajectories in Turbulent Flows. J. Fluid Mech. 180, 529–556.Google Scholar
  145. Thomson, D. J. & Montgomery, M. R. 1994 Reflection Boundary Conditions for Random Walk Models of Dispersion in Non-Gaussian Turbulence. Atmos. Environ. 28, 1981–1987.Google Scholar
  146. Vreman, B., Geurts, B. & Kuerten, H. 1994 Realizability conditions for the Turbulent Stress Tensor in Large-Eddy Simulation. J. Fluid Mech. 278, 351–362.ADSMATHCrossRefGoogle Scholar
  147. Wall, C., Boersma, B. J. & Moin, P. 2000 An Evaluation of the Assumed Beta Probability Density Function Subgrid-Scale Model for Large Eddy Simulation of Nonpremixed, Turbulent Combustion with Heat Realize. Phys. Fluids 12, 2522–2529.Google Scholar
  148. Wei T. & Willmarth, W. W. 1989 Reynolds Number Effects on the Structure of a Turbulent Channel Flow. J. Fluid Mech. 204, 57–95.Google Scholar
  149. Weinman, K. A. & Klimenko, A. Y. 2000 Estimation of the Kolmogorov Constant C0 by Direct Numerical Simulation of a Continuous Scalar. Phys. Fluids 12, 3205–3220.Google Scholar
  150. Wilcox, D. C. 1998 Turbulence Modeling for CFD. Second edition, DCW Industries, Inc.Google Scholar
  151. Wilson, J. D. & Sawford, B. L. 1996 Review of Lagrangian Stochastic Models for Trajectories in the Turbulent Atmosphere. Bound.-Layer Meteorol. 78, 191–210.ADSCrossRefGoogle Scholar
  152. Winckelmans, G. S., Wray, A. A. & Vasilyev, O. V. 1998 Testing of a New Mixed Model for LES: The Leonard Model Supplemented by a Dynamic Smagorinsky Term. Proc. Summer Program, Center for Turbulence Research (Stanford University and NASA Ames), 367–388.Google Scholar
  153. Wouters, H. A., Nooren, P. A., Peeters, T. W. J. & Roekaerts, D. 1996 Simulation of a Bluff-Body Stabilized Diffusion Flame Using Second-Moment Closure and Monte Carlo Methods. In: Twenty-Sixth Symp. (International) on Combust., The Combustion Institute, Pittsburgh, 177–185.Google Scholar
  154. Wouters, H. A. 1998 Lagrangian models for turbulent reacting flow. PhD thesis, TU Delft.Google Scholar
  155. Yeung, P. K. & Pope, S. B. 1989 Lagrangian Statistics from Direct Numerical Simulations of Isotropic Turbulence. J. Fluid Mech. 207, 531–586.MathSciNetADSCrossRefGoogle Scholar
  156. Zhou, X. Y. & Pereira, J. C. F. 2000 Large Eddy Simulation (2D) of a Reacting Plane Mixing Layer Using Filtered Density Function Closure. Flow, Turb. and Combust. 64, 279–300.Google Scholar
  157. Zubarev, D., Morozov, V. & Röpke, G. 1996 Statistical Mechanics of Nonequilibrium Processes. Vol. 1: Basic Concepts, Kinetic Theory. Akademie Verlag (VCH Publishers), Berlin.MATHGoogle Scholar
  158. Zubarev, D., Morozov, V. & Röpke, G. 1997 Statistical Mechanics of Nonequilibrium Processes. Vol. 2: Relaxation and Hydrodynamic Processes. Akademie Verlag (VCH Publishers), Berlin.MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Stefan Heinz
    • 1
  1. 1.Department of Fluid MechanicsTechnical University of MunichGarchingGermany

Personalised recommendations