Advertisement

The Classical Limit of Quantum Spin Systems

  • Elliott H. Lieb
Chapter

Abstract

We derive a classical integral representation for the partition function, Z Q , of a quantum spin system. With it we can obtain upper and lower bounds to the quantum free energy (or ground state energy) in terms of two classical free energies (or ground state energies). These bounds permit us to prove that when the spin angular momentum J → ∞ (but after the thermodynamic limit) the quantum free energy (or ground state energy) is equal to the classical value. In normal cases, our inequality is Z C (J) ≦ Z Q (J) ≦ Z C (J + 1).

Keywords

Partition Function Ground State Energy Thermodynamic Limit Classical Limit Spin Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Millard, K., Leff, H.: J. Math. Phys. 12, 1000–1005 (1971).MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    Arecchi, F. T., Courtens, E., Gilmore, R., Thomas, H.: Phys. Rev. A6, 2211–2237 (1972).ADSGoogle Scholar
  3. 3.
    Radcliffe, J. M.: J. Phys. A4, 313–323 (1971).MathSciNetADSGoogle Scholar
  4. 4.
    Kutzner, J.: Phys. Lett. A41, 475–476 (1972).MathSciNetCrossRefGoogle Scholar
  5. Atkins, P.W., Dobson, J. C.: Proc. Roy. Soc. (London) A, A321, 321–340 (1971).MathSciNetADSCrossRefGoogle Scholar
  6. 5.
    Golden, S.: Phys. Rev. B 137, 1127–1128 (1965).MathSciNetADSCrossRefGoogle Scholar
  7. 6.
    Griffiths, R. B.: J. Math. Phys. 5, 1215–1222 (1964).ADSCrossRefGoogle Scholar
  8. 7.
    Hepp, K., Lieb, E. H.: The equilibrium statistical mechanics of matter interacting with the quantized radiation field. Preprint.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1973

Authors and Affiliations

  • Elliott H. Lieb
    • 1
    • 2
  1. 1.Institut des Hautes Etudes ScientifiquesBures-sur-YvetteFrance
  2. 2.Department of MathematicsM.I.T.CambridgeUSA

Personalised recommendations