Advertisement

Fuzzy Sets for Representing the Spatial and Temporal Dimensions in GIS Databases

  • Suzana Dragićević
Chapter

Abstract

Geographic phenomena are dynamic and any effort to study, analyze, and predict them must consider both the space and time dimension. Space can be defined based on an absolute or a relative framework. According to the absolute view, space is a container in which objects are located; its structure is best described by the familiar and common three-dimensional Euclidean geometry. The relative view focuses on objects as the subject matter, and space is measured as relationships between objects. While the absolute view involves measurement referenced to a constant base with non-judgmental observations, the relative view implies interpretation of patterns and processes within specific contexts [47, 50]. Time can be described as the absolute linear line on which events occur and on which intervals between events can be measured. Space is three-dimensional and physically perceptible while time is understood as a unidirectional continuous flow. Both geography and cartography deal with space and time, and their relationships with various geographic phenomena. If there is no understanding of time and its impacts, geographers could not analyze and understand spatial changes nor cartographers able to represent these changes on maps [61].

Keywords

Geographical Information System Temporal Dimension Fuzzy Membership Function Membership Grade Fuzzy Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abraham T., Roddick J. (1999) Survey of spatio-temporal databases. Geo Informatica 3:61–69.Google Scholar
  2. 2.
    Ahlqvist O., Keukelaar J., Oukbir K. (2000) Rough classification and accuracy assessment. International Journal of Geographical Information Science 14(5) :475–496.CrossRefGoogle Scholar
  3. 3.
    Al-Taha K.K., Snodgrass R., Soo M.D. (1994) Bibliography on spatiotemporal databases. International Journal of Geographical Information Systems 8(1):95–103.CrossRefGoogle Scholar
  4. 4.
    Anile M.A.P., Furno P., Gallo G., Massolo A. (2003) A fuzzy approach to visibility maps creation over digital terrains. Fuzzy Sets and Systems 135:63–80.CrossRefGoogle Scholar
  5. 5.
    Bittner T., Stell J. (2002) Vagueness in rough location. Geo Informatica, 6:99–121.Google Scholar
  6. 6.
    Blaut J.M. (1961) Space and Process. The Professional Geographer 13(4):1–7.CrossRefGoogle Scholar
  7. 7.
    Burrough P.A. (1989) Fuzzy mathematical methods for soil survey and land evaluation. Journal of Soil Science 40:477–492.CrossRefGoogle Scholar
  8. 8.
    Burrough P.A., MacMillan R.A., Deursen W.V. (1992) Fuzzy classification methods for determining land suitability from soil profile observations and topography. Journal of Soil Science 43:193–210.CrossRefGoogle Scholar
  9. 9.
    Burrough P.A. (1996) Natural objects with indeterminate boundaries. In: Burrough P.A., Frank A. (Eds.) Geographic objects with indeterminate boundaries, Taylor and Francis, London, pp. 3–28.Google Scholar
  10. 10.
    Burrough P.A., Frank A. (1996) Geographic Objects with Intermediate Boundaries. Innovations in GIS 2. Taylor and Francis, London.Google Scholar
  11. 11.
    Cheng T., Molenaar M., Lin H. (2001) Formalizing fuzzy objects from uncertain classification results. International Journal of Geographical Information Sciences 15(1):27–42.CrossRefGoogle Scholar
  12. 12.
    Cheng T. (2002) Fuzzy objects: their changes and uncertainties. Photogrammetric Engineering and Remote Sensing 98(1):41–49.: 41–49.Google Scholar
  13. 13.
    Chrisman N.R. (1998) Beyond the snapshot: changing the approach to change, error and process. In: Egenhofer M.J., Golledge R.G. (Eds.) Spatial and Temporal Reasoning in Geographical Information Systems. Oxford University Press, New York, pp. 85–93.Google Scholar
  14. 14.
    Claramunt C., Theriault M. (1995). Managing time in GIS: an event-oriented approach. In: Recent Advances in Temporal Databases: Proceedings of the International Workshop on Temporal Databases. Zurich, Switzerland.Google Scholar
  15. 15.
    Claramunt C., Theriault M. (1997). A qualitative representation of evolving spatial entities in two-dimensional spaces. In: Carver S. (Ed.) Innovations in GIS V. Taylor and Francis, London, pp. 119–129.Google Scholar
  16. 16.
    Couclelis H. (1999) Space, time, geography. In: Longley P., Goodchild M., Maguire D., Rhind D. (Eds.) Geographical information systems: principles and technical issues. John Wiley and sons, New York, pp. 29–38.Google Scholar
  17. 17.
    Couclelis H. (1999) Towards an operational typology of geographic entities with ill-defined boundaries. In: Burrough P.A., Frank A. (Eds.) Geographic objects with indeterminate boundaries. Taylor and Francis, London, pp. 45–55.Google Scholar
  18. 18.
    Davidson D.A., Theocharopoulos S.P., Bloksma R.J. (1994) A land evaluation project in Greece using GIS and based on Boolean and fuzzy set methodologies. International Journal of Geographical Information Systems 8(4):369–384.CrossRefGoogle Scholar
  19. 19.
    Dragićević S., Marceau D.J. (1999) Spatio-temporal interpolation and fuzzy logic for GIS simulation of rural-to-urban transition. Cartography and Geographical Information Science 26(2):125–137.CrossRefGoogle Scholar
  20. 20.
    Dragićević S., Marceau D.J. (2000) An application of fuzzy logic reasoning for GIS temporal modeling of dynamic processes. Fuzzy Sets and Systems 113:69–80.CrossRefGoogle Scholar
  21. 21.
    Dragićević S., Marceau D.J. (2000) A fuzzy set approach for modelling time in GIS. International Journal of Geographical Information Science 14(3):225–245.CrossRefGoogle Scholar
  22. 22.
    Dragićević S., Marceau D.J., Marois C. (2001) Space, time, and dynamics modeling in historical GIS databases: a fuzzy logic approach. Environment and Planning B: Planning and Design 28:545–562.CrossRefGoogle Scholar
  23. 23.
    Egenhofer M., Golledge R.G. (1998) Spatial and temporal reasoning in geographic information systems. Oxford University Press, Oxford.Google Scholar
  24. 24.
    Fisher P. (1996) Boolean and fuzzy regions. In: Burrough P.A., Frank A. (Eds.) Geographic objects with indeterminate boundaries. Taylor and Francis, London, pp. 87–94.Google Scholar
  25. 25.
    Fisher P. (1997) Concepts and paradigms of spatial data. In: Craglia M., Couclelis H. (Eds.) Geographic Information Research: Bridging the Atlantic. Taylor & Francis, London, pp. 297–307.Google Scholar
  26. 26.
    Fisher P. (2001) Alternative set theories for uncertainty in spatial information. In: Hunsaker C., Goodchild M., Friedl M., Case T. (Eds.) Spatial Uncertainty in Ecology. Springer, New York, pp. 351–362.CrossRefGoogle Scholar
  27. 27.
    Foody G.M. (1996) Approaches for the production and evaluation of fuzzy land cover classifications from remotely-sensed data. International Journal of Remote Sensing 17(7) :1317–1340.CrossRefGoogle Scholar
  28. 28.
    Frank A.U. (1998) Different types of ‘times’ in GIS. In: Egenhofer M.J., Golledge R.G. (Eds.) Spatial and Temporal Reasoning in Geographical Information Systems. Oxford University Press, New York, pp. 40–62.Google Scholar
  29. 29.
    Hagerstrand T. (1970) What about people in regional science? Papers of the Regional Science Association 14(7):7–21.Google Scholar
  30. 30.
    Hall G.B., Wang F., Subaryono (1992) Comparison of Boolean and fuzzy classification methods in land suitability analysis using geographical information systems. Environment and Planning A 24:497–516.CrossRefGoogle Scholar
  31. 31.
    Heikkila E.J., Shen T.-Y., Yang K.-Z. (2003) Fuzzy urban sets: theory and application to desakota regions in China. Environment and Planning B: Planning and Design 30:239–254.CrossRefGoogle Scholar
  32. 32.
    Hornsby K., Egenhofer M., Hayes P. (1999) Modeling cyclic change. In: Chen P., Embley D., Koulondjan J., Liddle S., Reddinck J. (Eds.) Advances in Conceptual Modelling. Springer-Verlag Lecture Notes in Computer Science, Berlin, pp. 98–109.CrossRefGoogle Scholar
  33. 33.
    Kelmelis J.A. (1998) Process dynamics, temporal extent, and casual propagation as the basis for linking space and time. In: Egenhofer M.J., Golledge R.G. (Eds.) Spatial and Temporal Reasoning in Geographical Information Systems. Oxford University Press, New York, pp. 94–103.Google Scholar
  34. 34.
    Langran G. (1992) Time in geographic information systems. Taylor and Francis, London.Google Scholar
  35. 35.
    Langran G. (1993) Issues of implementing a spatiotemporal system. International Journal of Geographical Information Systems 7(4): 305–314.CrossRefGoogle Scholar
  36. 36.
    Langran G., Chrisman R. (1988) A framework for temporal geographic information. Cartographica 25(3):1–14.CrossRefGoogle Scholar
  37. 37.
    Leung Y. (1987) On the imprecision of boundaries. Geographical Analysis 19:125–151.CrossRefGoogle Scholar
  38. 38.
    Liu X.H., Andersson C. (2004) Assessing the impact of temporal dynamics on land-use change modeling. Computers, Environment and Urban Systems 18(1–2):107–124.CrossRefGoogle Scholar
  39. 39.
    Liu Y., Phinn R. (2003) Modelling urban development with cellular automata incorporating fuzzy-set approaches. Computers, Environment and Urban Systems 27(6): 637–658.CrossRefGoogle Scholar
  40. 40.
    Lodwick W.A., Santos J. (2003) Constructing consistent fuzzy surfaces from fuzzy data. Fuzzy Sets and Systems 135:259–277.CrossRefGoogle Scholar
  41. 41.
    Marceau D.J., Guindon L., Bruel M., Marois C. (2001) Building temporal topology in a GIS database to study the land-use changes in a rural-urban environment. Professional Geographer 53(4):546–558.CrossRefGoogle Scholar
  42. 42.
    McBratney A., Moore A. (1985) Application of fuzzy sets to climatic classification. Agricultural and Forest Meteorology 35:165–185.CrossRefGoogle Scholar
  43. 43.
    McBratney A., Odeh I. (1997) Application of fuzzy sets in soil sciences: Fuzzy logic, fuzzy measurements, and fuzzy decision. Geoderma 77:85–113.CrossRefGoogle Scholar
  44. 44.
    Pang M.Y.C., Shi W. (2002) Development of a process-based model for dynamic interaction in spatio-temporal GIS. Geo Informatica 6(4):323–344.Google Scholar
  45. 45.
    Parkes D., Thrift N. (1980). Times, spaces, and places. John WIley and Sons, New York.Google Scholar
  46. 46.
    Pawlak Z. (1982). Rough sets. International Journal of Computer and Information Sciences 11:241–356.Google Scholar
  47. 47.
    Peuquet D.J. (1994) Its about time: a conceptual framework for the representation of temporal dynamics in geographical information systems. Annals of the Association of American Geographers 84(3):441–461.CrossRefGoogle Scholar
  48. 48.
    Peuquet D.J., Duan N. (1995) An event-based spatiotemporal data model (ESTDM) for temporal analysis of geographical data. International Journal of Geographical Information Systems 9(1):7–24.CrossRefGoogle Scholar
  49. 49.
    Peuquet D.J. (2001) Making space for time: issues in space-time data representation. Geo Informatica 5(1):11–32.Google Scholar
  50. 50.
    Peuquet D.J. (2002) Representations of Space and Time. The Guilford Press, New York.Google Scholar
  51. 51.
    Pfoser D., Tryfona N. (1999) Capturing fuzziness and uncertainty of spatiotemporal objects. In: Proc. of the 6th International Symposium on the Advances in Spatial Databases, Hong Kong, pp. 111–132.CrossRefGoogle Scholar
  52. 52.
    Robinson V.B. (1988) Some implications of fuzzy set theory applied to geographical databases. Computers, Environment and Urban Systems 12:89–97.CrossRefGoogle Scholar
  53. 53.
    Robinson V.B. (2003) A perspective on the fundamentals of fuzzy sets and their use in geographical information systems. Transitions in GIS 7(1):3–30.CrossRefGoogle Scholar
  54. 54.
    Roddick J., Patrick J. (1992) Temporal semantics in geographic information systems — a survey. Information Systems 17:249–267.CrossRefGoogle Scholar
  55. 55.
    Santos J., Lodwick W.A., Neumaier A. (2002) A new approach to incorporate uncertainty in terrain modeling. In: Egenhofer M.J., Mark D.M. (Eds.) Geographic Information Science: Second International Conference, GlScience 2002, Boulder, Colorado, USA, September 2002. Springer, Germany, pp. 291–299.Google Scholar
  56. 56.
    Schneider M. (1999) Uncertainty management for spatial data in databases: fuzzy spatial data types. In: Guting R.H., Papadias D., Lochovsky F. (Eds.) SSD’99. Springer-Verlag, Germany, pp. 330–351.Google Scholar
  57. 57.
    Shibasaki R., Huang S. (1996) Spatio-temporal interpolation by integrating observation data and a behavioural model. In: Kraak M., Molenaar M. (Eds.) SDH’96, Advances in GIS Research II. Taylor and Francis, Delft, The Netherlands, pp. 655–666.Google Scholar
  58. 58.
    Snodgrass R.T. (1992) Temporal databases. In: Frank A.U., Campari J., Fozmentini U. (Eds.) GIS — From Space to Territory: Theories and Methods of Spatio-Temporal Reasoning. Theory and Methods of Spatio-Temporal Reasoning in Geographical Space, Pisa, Italy, pp. 22–64.CrossRefGoogle Scholar
  59. 59.
    Stead S.D. (1998) Temporal dynamics and geographical information systems. In: Egenhofer M.J., Golledge R.G. (Eds.) Spatial and Temporal Reasoning in GIS. Oxford University Press, New York, pp. 214–219.Google Scholar
  60. 60.
    Thrift N. (1977) An introduction to time geography. Concepts and Techniques in Modern Geography 3:3–36.Google Scholar
  61. 61.
    Vasilev I.R. (1997) Mapping Time. Cartographica 34(2):1–51.CrossRefGoogle Scholar
  62. 62.
    Wachowicz M. (1999) Object-oriented design for temporal GIS. Taylor and Francis, London.Google Scholar
  63. 63.
    Wachowicz M., Healey R.G. (1994) Towards temporality in GIS. In: Worboys M.F. (Ed.) Innovations in GIS. Taylor and Francis, UK, pp. 105–115.Google Scholar
  64. 64.
    Wang F. (1990) Improving remote sensing image analysis through fuzzy information representation. Photogrammetric Engineering and Remote Sensing 56(8):1163–1169.Google Scholar
  65. 65.
    Wang F. and Hall G.B. (1996) Fuzzy representation of geographical boundaries in GIS. International Journal of Geographical Information Systems 10(5):573–590.Google Scholar
  66. 66.
    Worboys M. (1994) A unified model for spatial and temporal information. The Computer Journal 37:26–33.CrossRefGoogle Scholar
  67. 67.
    Wu F. (1998) Simulating urban encroachment on rural land with fuzzy-logiccontrolled cellular automata in a geographical information system. Journal of Environmental Management 53:293–308.CrossRefGoogle Scholar
  68. 68.
    Yao Y. (1998) A comparative study of fuzzy sets and rough sets. Information Sciences 109:227–241.CrossRefGoogle Scholar
  69. 69.
    Yeh A.G.-O., Li X. (2002) A cellular automata model to simulate development density for urban planning. Environment and Planning B: Planning and Design 29:431–450.CrossRefGoogle Scholar
  70. 70.
    Zadeh L.A. (1965) Fuzzy Sets. Information and Control 8:338–353.CrossRefGoogle Scholar
  71. 71.
    Zhang J., Foody G.M. (1998) A fuzzy classification method of sub-urban land cover from remotely sensed imagery. International Journal of Remote Sensing 19:21–38.CrossRefGoogle Scholar
  72. 72.
    Zhang J., Stuart N. (2001) Fuzzy methods for categorical mapping with imagebased land cover data. International Journal of Geographical Information Science 15(2):175–195.CrossRefGoogle Scholar
  73. 73.
    Zhang W., Hunter G. (2000) Temporal interpolation of spatially dynamic objects. Geolnformatica 4(4):403–418.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Suzana Dragićević
    • 1
  1. 1.Spatial Analysis and Modeling Laboratory, Department of GeographySimon Fraser UniversityBurnabyCanada

Personalised recommendations