Advertisement

Spaces of Differentiable Functions of Several Variables and Imbedding Theorems

  • L. D. Kudryavtsev
  • S. M. Nikol’skiĭ
Part of the Encyclopaedia of Mathematical Sciences book series (EMS, volume 26)

Abstract

In the Part at hand the authors undertake to give a presentation of the historical development of the theory of imbedding of function spaces, of the internal as well as the externals motives which have stimulated it, and of the current state of art in the field, in particular, what regards the methods employed today.

Keywords

Sobolev Space English Translation Differentiable Function Lebesgue Space Weighted Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, R. A. [ 1975 ] Sobolev spaces. Academic Press, New York - London. Zbl. 314. 46030Google Scholar
  2. Amanov, T. I. [ 1976 ] Spaces of differentiable functions with a dominating mixed derivative. Nauka, Alma Ata [Russian]Google Scholar
  3. Babich, V. M., Slobodetskii, L. N. [ 1956 ] On the boundedness of the Dirichlet integral. Dokl. Akad. Nauk SSSR 106, 604–607 [Russian]. Zbl. 72, 50Google Scholar
  4. Bakhvalov, N. S. [ 1963 ] Imbedding theorems for classes of functions with a some bounded derivatives. Vestn. Mosk. Univ., Ser. I Mat. Mekh. 3, 7–16 [Russian]. Zbl. 122, 113Google Scholar
  5. Benedek, A., Panzone, R.[ 1961 ] The spaces L’ with mixed norm. Duke Math. J. 28, 301–324. Zbl. 107, 89 Bénilan, Ph., Brezis, H., Crandall, M GGoogle Scholar
  6. Benedek, A., Panzone, R.[ 1975 ] A semilinear elliptic equation in OR“). Ann. Sc. Norm. Super., Pisa, Cl. Sci., IV. Ser., 2, 523–555. Zbl. 314. 35077Google Scholar
  7. Bergh, J., Löfström, J. [ 1976 ] Interpolation spaces. An introduction. (Grundlehren 223) Springer, Berlin. Zbl. 344. 46071 Berkolalko, M. Z.Google Scholar
  8. Bergh, J., Löfström, J. [1983] Imbedding theorems for various metrics and dimensions for generalized Besov spaces. Tr. Mat. Inst. Steklova 161$118–28. Zbl. 545.46023. English translation: Proc. Steklov Inst. Math. 161, 19–31 (1984)Google Scholar
  9. Berkolaiko, M. Z., Ovchinnikov, V. I. [1983] Inequalities for entire functions of exponential type in symmetric spaces. Tr. Mat. Inst. Steklov. 161$13–17. Zbl. 541.46025. English translation: Proc. Steklov Inst. Math. 161, 1–17 (1984)Google Scholar
  10. Besov, O. V. [1967] On the conditions for the existence of a classical solution of the wave equation. Sib. Mat. Zh. 8$1243–256. Zbl. 146, 335. English translation: Sib. Math. J. 8, 179–188 (1968)Google Scholar
  11. Besov, O. V. [1969] The behavior of differentiable functions at infinity and the density of finite functions. Tr. Mat. Inst. Steklova 105$13–14. Zbl. 202, 396. English translation: Proc. Steklov Inst. Math. 105, 1–15 (1970)Google Scholar
  12. Besov, O. V. [1971] Théorèmes de plongement des espaces fonctionnels, in: Actes Congrès Internat. Math. 1970, 2, pp. 467–473. Gauthier-Villars, Paris. Zbl. 234. 46034Google Scholar
  13. Besov, O. V. [1974] Estimates for the moduli of continuity of abstract functions defined in a domain. Tr. Mat. Inst. Steklova 131, 16–24. Zbl. 316.46022. English translation: Proc. Steklov Inst. Math. 131 (1974), 15–23 (1975)Google Scholar
  14. Besov, O. V. [1980] Weighted estimates for mixed derivatives in a domain. Tr. Mat. Inst. Steklova 156$116–21. Zbl. 459.46023. English translation: Proc. Steklov Inst. Math. 156, 17–22 (1983)MATHGoogle Scholar
  15. Besov, O. V. [1983] On the density of finite functions in a weighted Sobolev space. Tr. Mat. Inst. Steklova 161, 29–47. Zbl. 541.46026. English translation: Proc. Steklov Inst. Math. 161, 33–52 (1984) [1984] Integral representations of functions and imbedding theorems for domains with the flexible horn conditions. Tr. Mat. Inst. Steklova 170, 12–30. Zbl. 582.46037. English translation: Proc. Steklov Inst. Math. 170, 33–38 (1987)MATHGoogle Scholar
  16. Besov, O. V. [1985] Estimates for integral moduli of continuity and imbedding theorems for domains with the flexible horn condition. Tr. Mat. Inst. Steklova 172$14–15. Zbl. 587.46032. English translation: Proc. Steklov Inst. Math. 172, 1–13 (1987)MathSciNetMATHGoogle Scholar
  17. Besov, O. V., Il’in, V. P., Nikol’skii, S. M. [ 1975 ] Integral representations of functions and imbedding theorems. Nauka, Moscow. Zbl. 352.46023. English translation: Winston, Washington D.C.; Halsted, New York - Toronto - London 1978Google Scholar
  18. Beurling, A. [ 1940 ] Ensembles exceptionnels. Acta Math. 72, 1–13. Zbl. 23, 142Google Scholar
  19. Brudnyl, Yu. A. [1971] Spaces defined with the aid of local approximations. Tr. Mosk. Mat. 0.-va 24, 69–132. Zbl. 254.46018. English translation: Trans. Mosc. Math. Soc. 24, 73–139 (1974)Google Scholar
  20. Brudnyl, Yu. A. [ 1976 ] Extension theorems for a family of function spaces. Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova 56, 170–172 [Russian]. Zbl. 346. 46027Google Scholar
  21. Brudnyl, Yu. A. [ 1977 ] Approximation spaces, in: Geometry of linear spaces and operator theory, pp. 3–30. Yaroslavl’ [Russian]. Zbl. 418. 46021Google Scholar
  22. Brudnyï, Yu. A., Shalashov, V. K. [ 1973 ] Lipschitz function spaces, in: Metric questions in the theory of functions and transformations 4, pp. 3–60. Kiev [Russian]. Zbl. 281. 46026Google Scholar
  23. Bugrov, Ya. S. [ 1957a ] Dirichlet’s problem for the disk. Dokl. Akad. Nauk SSSR 115, 639–642 [Russian]. Zbl. 91, 97Google Scholar
  24. Bugrov, Ya. S. [ 1957b ] On imbedding theorems. Dokl. Akad. Nauk SSSR 116, 531–534 [Russian]. Zbl. 137, 99Google Scholar
  25. Bugrov, Ya. S. [ 1958 ] A property of polyharmonic functions. Izv. Akad. Nauk SSSR Ser. Mat. 22, 491–514 [Russian]. Zbl. 81, 99Google Scholar
  26. Bugrov, Ya. S. [ 1963a ] Imbedding theorems for the H-classes of S. M. Nikol’skii. S.b. Mat. Zh. 5, 1009–1029 [Russian]. Zbl. 139, 302Google Scholar
  27. Bugrov, Ya. S. [ 1963b ] Differential properties of the solutions of a class of differential equations of higher order. Mat. Sb., Nov. Ser. 63, 59–121 [Russian]. Zbl. 128, 92Google Scholar
  28. Bugrov, Ya. S. [ 1966 ] A theorem on the representation of a class of functions. Sib. Mat. Zh. 7, 242–251. Zbl. 192, 227. English translation: Sib. Math. J. 7, 194–201 (1966)Google Scholar
  29. Bugrov, Ya. S. [1967] Estimates for polyharmonic polynomials in a mixed norm. Izv. Akad. Nauk SSSR Ser. Mat. 31$1275–288. Zbl. 168, 96. English translation: Math. USSR, Izv. 1, 259–272 (1968)MATHCrossRefGoogle Scholar
  30. Bugrov, Ya. S. [ 1971 ] Function spaces with a mixed norm. Izv. Akad. Nauk SSSR Ser. Mat. 35, 1137–1158. Zbl. 223.46036. English translation: Math. USSR, Sb. 5, 1145–1167 (1972)Google Scholar
  31. Bugrov, Ya. S. [1973] Imbedding theorems for function classes with a mixed norm. Mat. Sb., Nov. Ser. 92, 611–621. Zbl. 287.46042. English translation: Math. USSR, Izv. 21, 607–618 (1975)Google Scholar
  32. Bukhvalov, A. V. [ 1979a ] Generalization of the Kolmogorov-Nagumo theorem to tensorial derivatives, in: Qualitative and approximation methods in the study of operator equations, pp. 48–65. Yaroslavl’ [Russian]. Zbl. 443. 46027Google Scholar
  33. Bukhvalov, A. V. [1979b] Continuity of operators in spaces of vector functions with applications to the study of Sobolev spaces and analytic functions in the vectorial case. Dokl. Akad. Nauk SSSR 246$1524–528. Zbl. 426.47018. English translation: Soy. Math., Dokl. 20, 480–484 (1979)MATHGoogle Scholar
  34. Bukhvalov, A. V. [1981] The complex method of interpolation in spaces of vector functions and generalized Besov spaces. Dokl. Akad. Nauk SSSR 260$1265–269. Zbl. 493.46062. English translation: Soy. Math., Dokl. 24, 239–243 (1981)MATHGoogle Scholar
  35. Burenkov, V. I. [1966] Imbedding and extension theorems for classes of differentiable functions of several variables defined in the whole space, in: Itogi Nauki Tekn. VINITI, Mat. Anal. 1966, pp. 71–155. Zbl. 173, 414. English translation: Progress Math. 2, 73–161 (1968)Google Scholar
  36. Burenkov, V. I. [1969] On the additivity of the spaces WP and Bÿ and on imbedding theorems in domains of general type. Tr. Mat. Inst. Steklova 105$130–45. Zbl. 206, 123. English translation: Proc. Steklov Inst. Math. 105, 35–53 (1971)MATHGoogle Scholar
  37. Burenkov, V. I. [1974a] Sobolev’s integral representation and Taylor’s formula. Tr. Mat. Inst. Steklov 131$133–38. Zbl. 313.46032. English translation: Proc. Steklov Inst. Math. 131, 33–38 (1975)Google Scholar
  38. Burenkov, V. I. [1974b] On the density of infinitely differentiable functions in Sobolev spaces for an arbitrary open set. Tr. Mat. Inst. Steklova 131$139–50. Zbl. 313.46033. English translation: Proc. Steklov Inst. Math. 131, 39–51 (1975)Google Scholar
  39. Burenkov, V. I. [1974c] On the approximation of functions in the space WP (f1) by finite functions for an arbitrary open set Q. Tr. Mat. Inst. Steklova 131, 51–63. Zbl. 322.46041. English translation: Proc. Steklov Inst. Math. 105, 53–60 (1975)Google Scholar
  40. Burenkov, V. I. [1976a] On a way of approximating differentiable functions. Tr. Mat. Inst. Steklova 140, 27–67. Zbl. 433.46031. English translation: Proc. Steklov Inst. Math. 140, 27–70 (1979)Google Scholar
  41. Burenkov, V. I. [1976b] On extension of a function under preservation of a seminorm. Dokl. Akad. Nauk SSSR 228$1779–782. Zbl. 355.46014. English translation: Soy. Math., Dokl. 17, 806–810 (1976)MATHGoogle Scholar
  42. Burenkov, V. I. [1982] Mollifying operators with variable step and their application to approximations by infinitely differentiable functions, in: Nonlinear Analysis, Function Spaces and Applications (Pisek 1982 ), Vol. 2. pp. 5–37 (Teubner-Texte Math. 49). Teubner, Leipzig. Zbl. 536. 46021Google Scholar
  43. Burenkov, V. I., Fain, B. L. [1979] On extension of functions in anisotropic classes under preservation of class. Tr. Mat. Inst. Steklova 150$152–66. Zbl. 417.46038. English translation: Proc. Steklov Inst. Math. 150, 55–70 (1981)MATHGoogle Scholar
  44. Burenkov, V. I., Gold’man, M. L. [1979] On extension of functions in L. Tr. Mat. Inst. Steklova 150, 31–51. Zbl. 417.46037. English translation: Proc. Steklov Inst. Math. 150, 33–53 (1981)MATHGoogle Scholar
  45. Burenkov, V. I., Gold’man, M. L. [1983] On the connections between norms of operators in periodic and nonperiodic function spaces. Tr. Mat. Inst. Steklova 161$147–105. Zbl. 541.46027. English translation: Proc. Steklov Inst. Math. 161, 53–112 (1984)MATHGoogle Scholar
  46. Butzer, P. L., Behrens, H. [ 1967 ] Semi-groups of operators and approximation. (Grundlehren 145) Springer, Berlin - Heidelberg - New York. Zbl. 164, 437CrossRefGoogle Scholar
  47. Calderón, A. P. [ 1961 ] Lebesgue spaces of differentiable functions and distributions, in: Proc. Sympos. Pure Math. 4, pp. 33–49. Am. Math. Soc., Providence. Zbl. 195, 411Google Scholar
  48. Deny, J., Lions, J.-L. [1953–1954] Les espaces du type Beppo Levi. Ann. Inst. Fourier 5, 305–370 (1955). Zbl. 65, 99Google Scholar
  49. Douglas, J. [ 1931 ] Solution of the problem of Plateau. Trans. Am. Math. Soc. 33, 263–321. Zbl. 1, 141Google Scholar
  50. Dubinskii, Yu. A. [1975] Sobolev spaces of infinite order and the behavior of solutions of some boundary problems under unlimited growth of the order of the equation, Mat. Sb. Nov. Ser. 98$1163–184. Zbl. 324.46037. English translation: Math. USSR, Sb. 27, 143–162 (1977)CrossRefGoogle Scholar
  51. Dubinskii, Yu. A. [1976] Nontrivialness of Sobolev spaces of infinite order in the case of the entire Euclidean space and the torus. Mat. Sb. Nov. Ser. 100$1436–446. Zbl. 332, 46021. English translation: Math. USSR, Sb. 29, 393–401 (1978)CrossRefGoogle Scholar
  52. Dubinskii, Yu. A. [1978] Traces of functions in Sobolev spaces of infinite order and inhomogeneous problems for nonlinear equations. Mat. Sb. Nov. Ser. 106$166–84. Zbl. 391.35027. English translation: Math. USSR, Sb. 34, 627–644 (1978)CrossRefGoogle Scholar
  53. Dubinskii, Yu. A. [1979] Limits of Banach spaces. Imbedding theorems. A.plication to Sobolev spaces of infinite order, Mat. Sb. Nov. Ser. 106, 428–439. Zbl. 421.46024. English translation: Math. USSR, Sb. 38, 395–409 (1981)Google Scholar
  54. Dunford, N., Schwartz, J. [ 1958 ] Linear operators. Part 1: General theory. Interscience: New York - London. Zbl. 84, 104 (Reprint Wiley, New York 1988 )Google Scholar
  55. Dzhabrailov, A. D. [1967a] Properties of functions in some weighted spaces. Tr. Mat. Inst. Steklova 89$170–79. Zbl. 172, 165. English translation: Proc. Steklov Inst. Math. 89, 80–91 (1968)Google Scholar
  56. Dzhabrailov, A. D. [1967b] On the theory of imbedding theorems, Tr. Mat. Inst. Steklova 89$180–118. Zbl. 166, 397. English translation: Proc. Steklov Inst. Math. 89, 92–135 (1968)Google Scholar
  57. Dzhabrailov, A. D. [1972] Imbedding theorems for some classes of functions whose mixed derivatives satisfy a multiple integral Hölder condition. Tr. Mat. Inst. Steklova 117$1113–138. Zbl. 253, 46074. English translation: Proc. Steklov Inst. Math. 117, 135–164 (1974)MATHGoogle Scholar
  58. Dzhafarov, A. S. [ 1963 ] Imbedding theorems for generalized classes of S. M. Nikolskil. Azerbaidzhan. Gos. Univ. Uch. Zap., S.r. Fiz: Mat. Nauk, No. 2, 45–49 [Russian]Google Scholar
  59. Fain, B. L. [1976] On the extension of functions from an infinite cylinder with deterioration of the class, Tr. Mat. Inst. Steklova 140$1277–286. Zbl. 397.46026. English translation: Proc. Steklov Inst. Math. 140, 303–312 (1979)Google Scholar
  60. Fefferman, Ch., Stein, E. M. [ 1972 ] HP spaces of several variables. Acta Math. 129, 137–193. Zbl. 257. 46078 Fokht, A.S.Google Scholar
  61. Fefferman, Ch., Stein, E. M. [ 1982 ] Weighted imbedding theorems and estimates for the solutions of equations of elliptic type I, II. Diff. Uravn. 18, 1440–1449; 1927–1938. Zbl. 511.35013. English translation: Differ. Equations 18, 1024–1032, 1385–1394 (1983)Google Scholar
  62. Fefferman, Ch., Stein, E. M. [1984] On weighted imbedding theorems and their applications to estimates for solutions of equations of elliptic type. Differ. Uravn. 20$1337–343. Zbl. 553.35024. English translation: Differ. Equations 20, 270–276 (1984)Google Scholar
  63. Gallouet, Th., Morel, J.-M. [ 1983 ] Une équation semilinéaires elliptiques Lt (RN). C. R. Acad. Sci. Paris, Sér. I 296, 493–496. Zbl. 545. 35035Google Scholar
  64. Gil’derman, Yu. I. [ 1962 ] Abstract set functions and S.L. Sobolev’s imbedding theorems. Dokl. Akad. Nauk SSSR 144, 962–964. Zbl. 201, 162. English translation: Soy. Math., Dokl. 4, 743–747 ( 1963 ) Globenko, I.G.Google Scholar
  65. Gil’derman, Yu. I. [ 1962 ] Some questions in the theory of imbedding for domains with singularities at the boundary. Mat. Sb. Nov. Ser. 57, 201–224 [Russian]. Zbl. 103, 82Google Scholar
  66. Gol’dman, M. L. [1971] Isomorphism of generalized Hölder classes. Differ. Uravn. 7, 1449–1458. Zbl. 258.46032. English translation: Differ. Equations 7, 1100–1107 (1973)MATHGoogle Scholar
  67. Gol’dman, M. L. [1979] Description of the traces of some function spaces. Tr. Mat. Inst. Steklova 160$199–127. Zbl. 417.46039. English translation: Proc. Steklov Inst. Math. 150, 105–133 (1981)MATHGoogle Scholar
  68. Gol’dman, M. L. [1980] A covering method for the description of general spaces of Besov type. Tr. Mat. Inst. Steklova 156$147–81. Zbl. 455.46035. English translation: Proc. Steklov Inst. Math. 156, 51–87 (1983)MATHGoogle Scholar
  69. Gol’dman, M. L. [1984a] On the imbedding of Nikol’skii-Besov spaces with moduli of continuity of general type into Lorentz space. Dokl. Akad. Nauk SSSR 277$120–24. Zbl. 598.46023. English translation: Soy. Math., Dokl. 30, 11–16 (1984)MATHGoogle Scholar
  70. Gol’dman, M. L. [1984b] Imbedding theorems for anisotropic Nikol’skii-Besov spaces with moduli of continuity of general type. Tr. Mat. Inst. Steklova 170$186–104. Zbl. 578.46025. English translation: Proc. Steklov Inst. Math. 170, 95–116 (1987)MATHGoogle Scholar
  71. Gol’dshtein, V. M. [1981] Extension of functions with first generalized derivatives from plane domains. Dokl. Akad. Nauk SSSR 257$14512–454. Zbl. 484.46023. English translation: Soy. Math., Dokl. 23, 255–258 (1981)Google Scholar
  72. Gol’dshtein, V. M., Reshetnyak, Yu. G. [ 1983 ] Introduction to the theory of functions with generalized derivatives and quasiconformal maps. Nauka, Moscow. Zbl. 591. 46021Google Scholar
  73. Golovkin, K. K. [ 1962 ] On equivalent normed fractional spaces. Tr. Mat. Inst. Steklova 66, 364–383. Zbl. 142, 100. English translation: Transi., II. Ser., Am. Math. Soc. 79, 53–76 (1969)Google Scholar
  74. Golovkin, K. K. [1964a] On the impossibility of certain inequalities between function norms. Tr. Mat. Inst. Steklova 70, 5–25. Zbl. 119, 106. English translation: Transi., II. Ser., Am. Math. Soc. 67, 1–24 (1968)MATHGoogle Scholar
  75. Golovkin, K. K. [1964b] Imbedding theorems for fractional functions. Tr. Mat. Inst. Steklova 70, 38–46. Zbl. 119, 106. English translation: Transi., II. Ser., Am. Math. Soc. 91, 57–67 (1970)MathSciNetMATHGoogle Scholar
  76. Golovkin, K. K. [1967] On a generalization of the Marcinkiewicz interpolation theorem. Tr. Mat. Inst. Steklova 102$15–28. Zbl. 202, 400. English translation: Proc. Steklov Inst. Math. 102, 1–28 (1970)Google Scholar
  77. Golovkin, K. K. [1969] Parametrically normed spaces and normed massives. Tr. Mat. Inst. Steklova 106$11–135. Zbl. 223.46015. English translation: Proc. Steklov Inst. Math. 106, 1–121 (1972)MathSciNetGoogle Scholar
  78. Golovkin, K. K., Solonnikov, V. A. [1964/66] Estimates for integral operators with translation invariant norms. I-II, Tr. Mat. Inst. Steklova 70, 47–58; 72, 5–30. Zbl. 163, 332, 167, 49. English translation: Transi., II. Ser., Am. Math. Soc. 61, 97–112 (1968); Proc. Steklov Inst. Math. 92, 3–32 (1968)Google Scholar
  79. Gossez, J.-P. [ 1974 ] Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, Trans. Am. Math. Soc. 190, 163–205. Zbl. 277. 35052Google Scholar
  80. Il’in, V. P. [1977] Some imbedding theorems for the function spaces LTvég. Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova 70, 49–75. Zbl. 429.46020. English translation: J. Sov. Math. 23, 19091929 (1983)Google Scholar
  81. Il’in, V. P., Shubochkina, T. A. [1980] Some imbedding theorems for the function spaces Wi,,,K(G). Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova 102, 27–41. Zbl. 474.46022. English translation: J. Soy. Math. 22, 1183–1192 (1983)CrossRefGoogle Scholar
  82. Il’in, V. P., Shubochkina, T. A. [1981] On the existence and on the optimal choice of the values of the parameters in the inequalities which guarantee the validity of imbedding theorems, Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova 111$163–87. Zbl. 479.15016. English translation: J. Soy. Math. 24, 37–55 (1984)Google Scholar
  83. Jones, P. W. [ 1981 ] Quasiconformal mappings and extendability of functions in Sobolev spaces. Acta Math. 147, 71–88. Zbl. 489. 30017Google Scholar
  84. Kalyabin, G. A. [1975] Estimates for functions with a finite O. V. Besov seminorm. Differ. Uravn. 11, 713–717. Zbl. 309.46022. English translation: Differ. Equations 11, 538–541 (1976)MATHGoogle Scholar
  85. Kalyabin, G. A. [1976] The trace class for a family of periodic weighted classes. Tr. Mat. Inst. Steklova 140$1169–180. Zbl. 397.46030. English translation: Proc. Steklov Inst. Math. 140, 183–195 (1979)Google Scholar
  86. Kalyabin, G. A. [1977a] The trace problem for anisotropic weighted spaces of Liouville type. Izv. Akad. Nauk SSSR, Ser. Mat. 41$11138–1160. Zbl. 385.46018. English translation: Math. USSR, Izv. 11, 1085–1107 (1977)MATHCrossRefGoogle Scholar
  87. Kalyabin, G. A. [ 1977b ] Caracterization of spaces of generalized Liouville differentiation. Mat. Sb. Nov. Ser. 104, 42–48. Zbl. 373.46044. English translation: Math. USSR, Sb. 33, 37–42 (1977)Google Scholar
  88. Kalyabin, G. A. [1978a] The trace class for generalized anisotropic Liouville spaces. Izv. Akad. Nauk SSSR, Ser. Mat. 42$1305–314. Zbl. 378.46033. English translation: Math. USSR, Izv. 12, 289–297 (1978)MATHCrossRefGoogle Scholar
  89. Kalyabin, G. A. [ 1978b ] A generalized trace method in the theory of interpolation of Banach spaces. Mat. Sb. Nov. Ser. 106, 85–93. Zbl. 385.46019. English translation: Math. USSR, Sb. 34, 645–653 (1978)Google Scholar
  90. Kalyabin, G. A. [1979] Description of the traces for anisotropic spaces of Triebel-Lizorkin type. Tr. Mat. Inst. Steklova 150$1160–173. Zbl. 417.46040. English translation: Proc. Steklov Inst. Math. 150, 169–183 (1981)MATHGoogle Scholar
  91. Kalyabin, G. A. [1980] Description of functions in classes of Besov-Lizorkin-Triebel type. Tr. Mat. Inst. Steklova 156$182–109. Zbl. 455.46036. English translation: Proc. Steklov Inst. Math. 156, 89118 (1983)Google Scholar
  92. Kalyabin, G. A. [1983] An estimate for the capacity of sets with respect to generalized Lizorkin-Triebel classes and weighted Sobolev classes. Tr. Mat. Inst. Steklova 161$1111–124. Zbl. 545.46024. English translation: Proc. Steklov Inst. Math. 161, 119–133 (1984)MATHGoogle Scholar
  93. Kantorovich, L. V., Akilov, G. P. [1984] Functional analysis. 3rd rev. ed. Nauka, Moscow. English translation: Pergamon, Oxford - London - Edinburgh - New York - Paris - Frankfurt 1964Google Scholar
  94. Kazaryan, G. G. [1974] On the comparison of differential operators and differential operators of constant strength. Tr. Mat. Inst. Steklova 131$194–118. Zbl. 337.47021. English translation: Proc. Steklov Inst. Math. 131, 99–123 (1975)Google Scholar
  95. Kazaryan, G. G. [1976] Estimates for differential operators and hypoelliptic operators. Tr. Mat. Inst. Steklova 140$1130–161. Zbl. 399.35025. English translation: Proc. Steklov Inst. Math. 140, 141–174 (1979)Google Scholar
  96. Kazaryan, G. G. [ 1977 ] Operators of constant strength with a lower estimate in terms of derivatives and formally hypoelliptic operators. Anal. Math. 3, 263–289 [Russian]. Zbl. 374. 35011Google Scholar
  97. Kazaryan, G. G. [1979a] A hypoellipticity criterion in terms of the power and strength of operators. Tr. Mat. Inst. Steklova 150$1128–142. Zbl. 417.35029. English translation: Proc. Steklov Inst. Math. 150, 135–150 (1981)MATHGoogle Scholar
  98. Kazaryan, G. G. [1979b] Comparison of the power of polynomials and their hypoellipticity. Tr. Mat. Inst. Steklova 150$1143–159. Zbl. 417.35030. English translation: Proc. Steklov Inst. Math. 150, 151–167 (1981)MATHGoogle Scholar
  99. Kipriyanov, I. A. [1967] The Fourier-Bessel transform and imbedding theorems for weighted classes. Tr. Mat. Inst. Steklova 89$1130–213. Zbl. 157, 219. English translation: Proc. Steklov Inst. Math. 89, 149–246 (1968)Google Scholar
  100. Klimov, V. S. [1976] Imbedding theorems and geometric inequalities. Izv. Akad. Nauk SSSR Ser. Mat. 40$1645–671. Zbl. 332.46022. English translation: Math. USSR, Izv. 10, 615–638 (1977)MathSciNetMATHCrossRefGoogle Scholar
  101. Kocharli, A. F. [1974] Some weighted imbedding theorems in spaces with nonsmooth boundary. Tr. Mat. Inst. Steklova 131$1128–146. Zbl. 316.46023. English translation: Proc. Steklov Inst. Math. 131, 135–162 (1975)Google Scholar
  102. Kokilashvili, V. M. [ 1978a ] Anisotropic Bessel potentials. Imbedding theorems with an limit exponent. Tr. Mat. Inst. Tbilis. 58, 134–149 [Russian]. Zbl. 456. 46030Google Scholar
  103. Kokilashvili, V. M. [1978b] Maximal inequalities and multipliers in weighted Triebel-Lizorkin spaces. Dokl. Akad. Nauk SSSR 239, 42–45. Zbl. 396.46034. English translation: Soy. Math., Dokl. 19, 272–276 (1978)MATHGoogle Scholar
  104. Kokilashvili, V. M. [ 1979 ] On Hardy inequalities in weighted spaces. Soobshch. Akad. Nauk Gruz. SSR 96, 37–40 [Russian]. Zbl. 434. 26007Google Scholar
  105. Kokilashvili, V. M. [1983] On weighted Lizorkin-Triebel spaces, singular integrals, multipliers, imbedding theorems. Tr. Mat. Inst. Steklova 161$1125–149. Zbl. 576.46023. English translation: Proc. Steklov Inst. Math. 161, 135–162 (1984)Google Scholar
  106. Kokilashvili, V. M. [1985a] Maximal functions and integrals of potential type in weighted Lebesgue and Lorentz spaces. Tr. Mat. Inst. Steklova 172$1192–201. Zbl. 575.42019. English translation: Proc. Steklov Inst. Math. 172, 213–222 (1987)MATHGoogle Scholar
  107. Kokilashvili, V. M. [ 1985b ] Weighted inequalities for some integral transformations. Tr. Tbilis. Mat. Inst. Razmadze 76, 100–106 [Russian]. Zbl. 584. 44004Google Scholar
  108. Kokilashvili, V. M. [ 1985c ] Maximal functions and singular integrals in weighted function spaces, Tr. ‘Mills. Mat. Inst. Razmadze 80, 1–116 [Russian]. Zbl. 609. 42015Google Scholar
  109. Kolmogorov, A. N., Fomin, S. V. [1976] Elements of the theory of functions and functional analysis. Nauka, Moscow (Zbl. 167, 421 2nd ed. 1968) (5th ed. 1981) English translation of 1st ed.: Graylock, Rochester/Albany 1957/61 (2 vols.). Zbl. 57, 336; Zbl. 90, 87Google Scholar
  110. Kondrashov, V. I. [ 1938 ] On some estimates for families of functions subject to integral inequalities. Dokl. Akad. Nauk SSSR 18, 235–240 [Russian]. Zbl. 21, 132Google Scholar
  111. Kondrashov, V. I. [ 1950 ] The behavior of functions in LP on manifolds of different dimensions. Dokl. Akad. Nauk SSSR 72, 1009–1012 [Russian]. Zbl. 37, 204Google Scholar
  112. Konyushkov, V. I. [ 1958 ] Best approximations of trigonometric polynomials and Fourier coefficients. Mat. Sb. Nov. Ser. 44, 53–84 [Russian]. Zbl. 81, 284Google Scholar
  113. Korotkov, V. G. [ 1962 ] Abstract set functions and imbedding theorems. Dokl. Akad. Nauk SSSR 146, 531–534. Zbl. 134, 113. English translation: Soy. Math., Dokl. 3, 1345–1349 (1963)Google Scholar
  114. Korotkov, V. G. [1965] On compactness tests in abstract function spaces and on the complete continuity of the imbedding operator. Dokl. Akad. Nauk SSSR 160$1530–533. Zbl. 139, 71. English translation: Soy. Math., Dokl. 6, 132–135 (1965)MathSciNetMATHGoogle Scholar
  115. Krasnosel’skii, A. F., Rutitskii, Ya. B. [ 1958 ] Convex functions and Orlicz spaces. Fizmatgiz, Moscow. Zbl. 84, 101. English translation: Nordhoff, Groningen 1961Google Scholar
  116. Krein, S. G., Petunin, Yu. I., Semenov, E. M. [ 1978 ] Interpolation of linear operators. Nauka, Moscow. Zbl. 499.46044. English translation: Transi. Math. Monographs 54, Am. Math. Soc., Providence 1981Google Scholar
  117. Kudrjavcev, L. D. Kudryavtsev, L. D. [1983] Some topics of the imbedding of function spaces and its applications, in: Recent trends in Mathematics, Conf., Rheinhardsbrunn, Oct. 11–13, 1982, pp. 183–192. Teubner, Leipzig. Zbl. 521. 46025Google Scholar
  118. Kudrjavcev, L. D. Kudryavtsev, L. D. [ 1986 ] On norms of weighted spaces of functions given on infinite intervals, Anal. Math. 12, 269–282. Zbl. 646. 46024Google Scholar
  119. Kudryavtsev, L. D. [ 1959 ] Direct and converse imbedding theorems. Applications and solution of elliptic equation by variational methods. Tr. Mat. Inst. Steklova 55, 1–182 [Russian]. Zbl. 95, 92Google Scholar
  120. Kudryavtsev, L. D. [1966] Imbedding theorems for classes of functions defined in the entire space or a halfspace, I-II. Mat. Sb. Nov. Ser. 69, 616–639; 70, 3–35. Zbl. 192, 473. English translation: Transl., II. Ser., Am. Math. Soc. 74 199–225; 227–260 (1968)Google Scholar
  121. Kudryavtsev, L. D. [1967] Solution of the first boundary problem for selfadjoint elliptic equations in the case of unbounded domains. Izv. Akad. Nauk SSSR, Ser. Math. 31, 1179–1199. Zbl. 153, 426. English translation: Math. USSR, Izv. 1, 1131–1151 (1969)Google Scholar
  122. Kudryavtsev, L. D. [1972] On polynomial traces and on moduli of smoothness of functions of several variables. Tr. Mat. Inst. Steklova 117$1180–211. Zbl. 244.46039. English translation: Proc. Steklov Inst. Math. 117, 215–250 (1974)Google Scholar
  123. Kudryavtsev, L. D. [1975a] On the stablization of functions at infinity and on the solutions of differentail equations. Differ. Uravn. 11$1332–357. Zbl. 299.35013. English translation: Differ. Equations 11, 253–272 (1976)MATHGoogle Scholar
  124. Kudryavtsev, L. D. [1975b] On the stabilization of functions at infinity and at a hyperplane. Tr. Mat. Inst. Steklova 134$1124–141. Zbl. 337.46033. English translation: Proc. Steklov Inst. Math. 134, 141–160 (1977)Google Scholar
  125. Kudryavtsev, L. D. [1980] On the construction of functions of finite functions which approximate functions in weighted classes. Tr. Mat. Inst. Steklova 156$1121–129. Zbl. 457.46027. English translation: Proc. Steklov Inst. Math. 156, 131–139 (1983)MATHGoogle Scholar
  126. Kudryavtsev, L. D. [1983a] On the question of polynomial traces. Tr. Mat. Inst. Steklova 161$1149–157. Zbl. 597.46029. English translation: Proc. Steklov Inst. Math. 161, 163–170 (1984)Google Scholar
  127. Kudryavtsev, L. D. [1983b] On a variational method for the search of generalized solutions of differential equations in function spaces with a power weight. Differ. Uravn. 19$11723–1740. Zbl. 553.35016. English translation: Differ. Equations 19, 1282–1296 (1983)MATHGoogle Scholar
  128. Kufner, A. [1980] Weighted Sobolev spaces. (Teubner-Texte Math. 31.) Teubner, Leipzig (licens. ed. Wiley 1985). Zbl. 455. 46034Google Scholar
  129. Kufner, A., John, O., Fucik, S. [ 1977 ] Function spaces. Academia, Prague. Zbl. 364. 46022Google Scholar
  130. Kuznetsov, Yu. V. [1974] Some inequalities for fractional seminorms. Tr. Mat. Inst. Steklova 131$1147–157. Zbl. 329.46034. English translation: Proc. Steklov Inst. Math. 131, 153–164 (1975)Google Scholar
  131. Kuznetsov, Yu. V. [1976] On the pasting of functions in the space W. Tr. Mat. Inst. Steklova 140, 191–200. Zbl. 397.46028. English translation: Proc. Steklov Inst. Math. 140, 209–220 (1979)Google Scholar
  132. Lacroix, M.-Th. [ 1975 ] Espaces de traces des espaces de Sobolev-Orlicz, J. Math. Pures Appl., IX. Sér. 53, 439–458. Zbl. 275. 46027Google Scholar
  133. Lions, J.-L., Magenes, E. [ 1968 ] Problèmes aux limites non homogènes et applications, 1–2. Dunod, Paris. Zbl. 165, 108 Lizorkin, P. I.Google Scholar
  134. Lions, J.-L., Magenes, E. [ 1960 ] Boundary behavior of functions in “weighted” classes, Dokl. Akad. Nauk SSSR 132, 514–517. Zbl. 106, 308. English translation: Soy. Math., Dokl. 1, 589–593 (1960)Google Scholar
  135. Lions, J.-L., Magenes, E. [1967a] A theorem of Littlewood-Paley type for multiple Fourier integrals. Tr. Mat. Inst. Steklova 89$1214–230. Zbl. 159, 174. English translation: Proc. Steklov Inst. Math. 89, 247–267 (1968)Google Scholar
  136. Lions, J.-L., Magenes, E. [1967b] On multipliers of the Fourier integral in the spaces 4,0, Tr. Mat. Inst. Steklova 89$1231–248. Zbl. 159, 174. English translation: Proc. Steklov Inst. Math. 89, 269–290 (1968)Google Scholar
  137. Lions, J.-L., Magenes, E. [1969] Generalized Liouville differentiation and the method of multipliers in the theory of imbedding of classes of differentiable functions. Tr. Mat. Inst. Steklova 105$189–167. Zbl. 204, 437. English translation: Proc. Steklov Inst. Math. 105, 105–202 (1971)Google Scholar
  138. Lions, J.-L., Magenes, E. [ 1970 ] Multipliers of Fourier integrals and estimate for convolutions in spaces with mixed norm. Applications, Izv. Akad. Nauk SSSR, Ser. Math. 34, 218–247. Zbl. 193, 214. English translation: Math. USSR, Izv. 4, 225–255 (1971)Google Scholar
  139. Lions, J.-L., Magenes, E. [1972] Operators connected with fractional differentiation and classes of differentiable functions. Tr. Mat. Inst. Steklova 117$1212–243. Zbl. 253.46071. English translation: Proc. Steklov Inst. Math. 117, 251–286 (1974)Google Scholar
  140. Lions, J.-L., Magenes, E. [1974] Properties of functions in the spaces Ape. Tr. Mat. Inst. Steklova 131, 158–181. Zbl. 317.46029. English translation: Proc. Steklov Inst. Math. 131, 165–188 (1975)Google Scholar
  141. Lions, J.-L., Magenes, E. [1975] On functional characteristics of the interpolation spaces (L P (Q), WP (L]))B,,,. Tr. Mat. Inst. Steklova 134, 180–203. Zbl. 337.46033. English translation: Proc. Steklov Inst. Math. 134, 203–227 (1977)Google Scholar
  142. Lions, J.-L., Magenes, E. [1976] Interpolation of weighted L,, spaces. Tr. Mat. Inst. Steklova 140$1201–211. Zbl. 397.46029. English translation: Proc. Steklov Inst. Math. 140, 221–232 (1979)Google Scholar
  143. Lions, J.-L., Magenes, E. [1977] On bases and multipliers in the spaces BP9(M). Tr. Mat. Inst. Steklova 143, 88–104. Zb1.468.46020. English translation: Proc. Steklov Inst. Math. 143, 93–110 (1980)Google Scholar
  144. Lizorkin, P. I., Nikol’skii, S. M. [1969] Compactness of sets of differentiable functions. Tr. Mat. Inst. Steklova 105$1168–177. Zbl. 204, 438. English translation: Proc. Steklov Inst. Math. 105, 203–215 (1971)MATHGoogle Scholar
  145. Lizorkin, P. I., Nikol’skii, S. M. [1981] Coercivity properties of elliptic equations with degeneracy. A variational method. Tr. Mat. Inst. Steklova 157$190–118. Zbl. 475.35050. English translation: Proc. Steklov Inst. Math. 157, 95–125 (1983)MATHGoogle Scholar
  146. Lizorkin, P. I., Nikol’skii, S. M. [1983] Coercivity properties of elliptic equations with degeneracy and generalized right hand side. Tr. Mat. Inst. Steklova 161$1157–183. Zbl. 541.35035. English translation: Proc. Steklov Inst. Math. 161, 171–198 (1984)MATHGoogle Scholar
  147. Lizorkin, P. I., Otelbaev, M. [1979] Imbedding and compactness theorems for Sobolev type spaces with weights, I-II. Mat. Sb. Nov. Ser. 108, 358–377; 112, 56–85. Zbl. 405.46025; Zbl. 447.46027. English translation: Math. USSR, Sb. 36, 331–349 (1981); 40, 51–77 (1981)MATHGoogle Scholar
  148. Luxemburg, W. A. [ 1955 ] Banach functional spaces. Proefschr. doct. techn. wet., Techn. Hochschule te Delft. Zbl. 68, 92Google Scholar
  149. Magenes, E. [ 1964 ] Spazi di interpolazioni ed equazioni a derivate parziali, in: Atti del VII. Congresso dell’Unione Matematica Italiana, pp. 134–197. Edizioni Cremonese, Roma. Zbl. 173, 158 Marcinkiewicz, J.Google Scholar
  150. Magenes, E. [ 1939 ] Sur l’interpolation d’opérateurs, C.R. Acad. Sci. Paris 208, 1272–1273. Zbl. 21, 16 Maz’ya, V. G.Google Scholar
  151. Magenes, E. [ 1979 ] On the summability with respect to an arbitrary measure of functions in the spaces of S.L. S.bolev - L.N. Slobodetskii, Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova 92, 192–202 [Russian]. Zbl. 431. 46023Google Scholar
  152. Magenes, E. [1980] Integral representations for functions satisfying homogeneous boundary condition and its applications, Izv. Vyssh. Uchebn. Zaved., Mat. 1980 No. 2, 34–44. Zbl. 433.46033. English translation: Soy. Math. 24, No. 2, 35–44 (1980)MathSciNetGoogle Scholar
  153. Magenes, E. [1981] On extension of functions in S.L. S.bolev spaces, Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova 113, 231–236. Zbl. 474.46020. English translation: J. Soy. Math. 22, 18511855 (1983)Google Scholar
  154. Magenes, E. [1983] On functions with finite Dirichlet integral in domains with a cusp point at the boundary, Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova 126$1117–137. Zbl. 527.46025. English translation: J. Soy. Math. 27, 2500–2514 (1984)Google Scholar
  155. Magenes, E. [ 1984 ] S.L. Sobolev spaces. LGU, Leningrad. English translation: Springer-Verlag, Berlin - Heidelberg - New York 1985Google Scholar
  156. Mazya, W. Maz’ya, V.G., Nagel, J. [ 1978 ] Über äquivalente Normierung der anisotropen Funktionalräume HP(R“), Beitr. Anal. 12, 7–17. Zbl. 422. 46029Google Scholar
  157. Meyers, N. G., Serrin, J. [ 1964 ] H W, Proc. Natl. Acad. Sci. U.S.A. 51, 1055–1056. Zbl. 123, 305Google Scholar
  158. Mikhailov, V. P. [1967] On the behavior at infinity of a class of polynomials, Tr. Mat. Inst. Steklova 91$159–81. Zbl. 185, 339. English translation: Proc. Steklov Inst. Math. 91, 61–82 (1969)Google Scholar
  159. Morrey, Ch.B. [ 1966 ] Multiple integrals in the calculus of variations. (Grundlehren 130) Springer, Berlin - Heidelberg - New York. Zbl. 142, 387Google Scholar
  160. Natanson, I. P. [1974] Theory of functions of a real variable. 1st ed. Nauka, Moscow. Zbl. 39, 28. German translation: Akademie-Verlag, Berlin 1954 (5th ed. 1981 )Google Scholar
  161. Necas, J. [ 1967 ] Les méthodes directes en théorie des equations elliptiques. NCAV, PragueMATHGoogle Scholar
  162. Nikol’skaya, N. S. [1973] Approximation of differentiable functions of several variables by Fourier sums in the metric Lp. Dokl. Akad. Nauk SSSR 208, 1282–1285. Zbl. 295.41012. English translation: Soy. Math., Dokl. 14, 262–266 (1973)MATHGoogle Scholar
  163. Nikol’skii, S. M. [1951] Inequalities for entire functions of finite degree and their application to the theory of differentiable functions of several variables, Tr. Mat. Inst. Steklova 38, 244–278. Zbl. 49, 323. English translation: Transl., II. Ser., Am. Math. Soc. 80, 1–38 (1969)Google Scholar
  164. Nikol’skii, S. M. [ 1953 ] On the question on solving the polyharmonic equation by variational methods, Dokl. Akad. Nauk SSSR 88, 409–411 [Russian]. Zbl. 53, 74Google Scholar
  165. Nikol’skii, S. M. [1956] On the extension of functions of several variables with preservation of differentiability properties, Mat. Sb. Nov. Ser. 40, 243–268. Zbl. 73, 26. English translation: Transl., II. Ser., Am. Math. Soc. 83, 159–188 (1969)Google Scholar
  166. Nikol’skii, S. M. [1956/58] Boundary properties of functions defined in domains with corner points, I-III, Mat. Sb. Nov. Ser. 40, 303–318; 44, 127–144; 45, 181–194. Zbl. 73, 277; Zbl. 80, 85; Zbl. 133, 362. English translation: Transl., II. Ser., Am. Math. Soc. 83, 101–120, 121–141, 143–157 (1969)Google Scholar
  167. Nikol’skii, S. M. [ 1958 ] The variational problem of Hilbert, Izv. Akad. Nauk SSSR Ser. Mat. 22, 599–630 [Russian]. Zbl. 86, 307Google Scholar
  168. Nikol’skii, S. M. [ 1961 ] On the question of inequalities between partial derivatives, Tr. Mat. Inst. Steklova 64, 147–164 [Russian]. Zbl. 121, 293Google Scholar
  169. Nikol’skii, S. M. [1960/61] On a property of the classes HH, Ann. Univ. Budapest No. 3–4, 205–216 [Russian]. Zbl. 111, 305Google Scholar
  170. Nikol’skii, S. M. [1970] Variational problems of equations of elliptic type with degeneracy at the boundary, Tr. Mat. Inst. Steklova 150$1212–238. Zbl. 416.35032. English translation: Proc. Steklov Inst. Math. 150, 227–254 (1981)Google Scholar
  171. Nikol’skii, S. M. [1977] Approximation of function of several variables and imbedding theorems. 2nd edition, Nauka, Moscow. Zbl. 496.46020. English translation: (Grundlehren 205 ) Springer, Berlin - Heidelberg - New York 1975 )Google Scholar
  172. Nikolsky, S. M. Nikol’skii, S. M., Lions, J.-L., Lisorkin, P. I. Lizorkin, P. I. [ 1965 ] Integral representations and isomorphism properties of some class es of functions, Ann. Sc. Norm. Sup. Pisa Sci. Fis. Mat., III. Ser., 19, 127–178. Zbl. 151, 180Google Scholar
  173. Nikol’skii, Yu. S. [1969] On imbedding theorems in weighted classes, Tr. Mat. Inst. Steklova 105$1178–189. Zbl. 207, 434. English translation: Proc. Steklov Inst. Math. 105, 217–231 (1971)Google Scholar
  174. Nikol’skii, Yu. S. [1971] On extensions of weighted spaces of differentiable functions, Sibirsk. Mat. Zh. 12$1158–70. Zbl. 226.46037. English translation: Sib. Math. J. 12, 113–122 (1971)CrossRefGoogle Scholar
  175. Nikol’skii, Yu. S. [1974] On the behavior at infinity of functions with given differential-difference properties in Lp, Tr. Mat. Inst. S.eklova 131, 182–198. Zbl. 317.46028. English translation: Proc. Steklov Inst. Math. 131, 189–205 (1975)Google Scholar
  176. Nikol’skii, Yu. S. [ 1979 ] Inequalities between various seminorms of differentiable functions in several variables, Tr. Mat. Inst. Steklova 150, 239–264. Zbl. 416.46023. English translation: 150, 255–280 ( 1981 ) Ovchinnikov, V. I.Google Scholar
  177. Nikol’skii, Yu. S. [1976] Interpolation theorems resulting from Grothendieck’s inequality, Funktsional. Anal. i Prilozhenya 10, 45–54. Zbl. 342.46024. English translation: Funct. Anal. Appl. 10, 287–294 (1977)Google Scholar
  178. Peetre, J. [ 1966 ] Espaces d’interpolation et théorème de Soboleff. Ann. Inst. Fourier, 16, No. 1, 279–317. Zbl. 151, 79Google Scholar
  179. Peetre, J. [ 1975a ] On the spaces of Triebel-Lizorkin type. Ark. Mat. 13, 123–130. Zbl. 302. 46021.Google Scholar
  180. Peetre, J. [ 1975b ] The trace of Besov spaces - a limiting case. Technical report, LundGoogle Scholar
  181. Peetre, J. [ 1976 ] New thoughts on Besov spaces. (Duke Univ. Math. Ser. 1) Duke University, Durham. Zbl. 356. 46038Google Scholar
  182. Perepelkin, V. G. [ 1976 ] Integral representations for functions belonging to weighted S. L. Sobolev classes in domains and some applications, I-II. Sib. Mat. Zh. 17, 119–140; 318–330. Zbl. 322.46027; Zbl. 344.46075. English translation: Sib. Math. J. 17, 96–112; 248–257 (1976)Google Scholar
  183. Pigolkina, T. S. [1969] On the theory of weighted classes. Tr. Mat. Inst. Steklova 105$1201–212. Zbl. 207, 433. English translation: Proc. Steklov Inst. Math. 105, 246–260 (1971)MATHGoogle Scholar
  184. Pokhozhaev, S. I. [ 1965 ] On S. L. Sobolev’s imbedding theorem in the case pl = n, in: Proc. Sci. Tech. Conf. on Adv. Scienc. 1964–1965, Ser. Mat. Min. Vyssh. i Sred. Spets. Obraz. RSFSR, MEI, Moscow [Russian]Google Scholar
  185. Pólya, G. [ 1931 ] Bemerkungen zur Interpolation and zur Näherungstheorie der Balkenbiegung. Z. Angew. Math. Mech. 11, 445–449. Zbl. 3, 273Google Scholar
  186. Portnoy, V. R. [1964] Two imbedding theorems for the spaces LPG (û x R + ). Dokl. Akad. Nauk SSSR 155, 761–764. Zbl. 139, 71. English translation: Soy. Math., Dokl. 5, 514–517 (1964)Google Scholar
  187. Portnoy, V. R. [1965] A density theorem for finite functions in weighted classes. Dokl. Akad. Nauk SSSR 160$1545–548. Zbl. 139, 71. English translation: Soy. Math., Dokl. 6, 149–152 (1965)Google Scholar
  188. Potapov, M. K. [ 1968 ] On some conditions for mixed derivatives to be in Lp. Mathematica (Cluj) 10, 355–367 [Russian]. Zbl. 184, 95Google Scholar
  189. Potapov, M. K. [ 1969 ] On the imbedding and coincidence of some classes of functions. Izv. Akad. Nauk SSSR, Ser. Mat. 33, 840–860. Zbl. 187, 57. English translation: Math. USSR, Izv. 3, 795–813 (1971)Google Scholar
  190. Potapov, M. K. [1980] Imbedding theorems in a mixed metric. Tr. Mat. Inst. Steklova 156$1143–156. Zbl. 454.46030. Proc. Steklov Inst. Math. 156, 155–171 (1983)MATHGoogle Scholar
  191. Poulsen, E. T. [ 1962 ] Boundary values in functional spaces. Math. Scand. 10, 45–52. Zbl. 104, 332Google Scholar
  192. Radyno, Ya. V. [1985] Differential equations in a scale of Banach spaces. Differ. Uravn. 21$11412–1422. Zbl. 592.34038 Differ. Equations 21, 971–979 (1985)MATHGoogle Scholar
  193. Reshetnyak, Yu. G. [1971] Some integral representations of differentiable functions, Sib. Mat. Zh. 12, 420–432. Zbl. 221.46031. English translation: Sib. Math. J. 12, 299–307 (1971)Google Scholar
  194. Reshetnyak, Yu. G. [1980] Integral representations of functions in nonsmooth domains, Sib. Mat. Zh. 21, 108–116. Zbl. 455.35025. English translation: Sib. Math. J. 21, 833–839 (1981)MATHGoogle Scholar
  195. Samko, S. G. [ 1984 ] Hypersingular integrals and their applications. Izd. Univ.: Rostov n/D [Russian]. Zbl. 577. 42016Google Scholar
  196. Sedov, V. N. [ 1972a ] Weighted spaces. Imbedding theorems, Differ. Uravn. 8, 1452–1462. Zbl. 253.46077. English translation: Differ. Equations 8, 1118–1126 (1974)Google Scholar
  197. Sedov, V. N. [ 1972b ] Weighted spaces. Boundary conditions, Differ. Uravn. 8, 1835–1847. Zbl. 264.46031 Differ. Equations 8, 1415–1424 (1974)Google Scholar
  198. Shaposhnikova, T. O. [ 1980 ] Equivalent normings in functions spaces with fractional or functional smoothness, Sib. Mat. Zh. 21, 184–196. Zbl. 438.46024. English translation: Sib. Math. J. 21, 450–460 ( 1981 ) Slobodetskii, L. N.Google Scholar
  199. Shaposhnikova, T. O. [ 1958a ] Sobolev spaces of fractional order and their applications to boundary value problems for partial differential equations, Dokl. Akad. Nauk SSSR 118, 243–246 [Russian]. Zbl. 88, 303Google Scholar
  200. Shaposhnikova, T. O. [1958b] Generalized S.L. S.bolev spaces and their applications to boundary problems with partial derivatives, Uch. Zap. Leningr. Gos. Ped. Inst. No. 197, 54–112. Zbl. 192, 228. English translation: Transl., II. Ser., Am. Math. Soc. 57, 207–275 (1966)Google Scholar
  201. Sobolev, S. L. [ 1935 ] Cauchy’s problem in a function space, Dokl. Akad. Nauk SSSR 3, 291–294 [Russian]Google Scholar
  202. Sobolev, S. L. [ 1938 ] On a theorem of functional analysis, Mat. Sb. Nov. Ser. 4, 471–497 [Russian]. Zbl. 12, 406Google Scholar
  203. Sobolev, S. L. [ 1959 ] Some generalizations of the imbedding theorem, Fundam. Math. 47, 277–324. Zbl. 127, 68. English translation: Transi., II. Ser., Am. Math. Soc. 30, 295–344MathSciNetGoogle Scholar
  204. Sobolev, S. L. [1962] Some applications of functional analysis to mathematical physics. 2nd edition, SO Akad. Nauk SSSR, Novosibirsk. Zbl. 123, 90. English translation: Transi. Math. Monographs Vo1.7, Am. Math. Soc. 1963 German translation: Akademie-Verlag, Berlin 1964Google Scholar
  205. Sobolev, S. L. [ 1963 ] On the density of finite functions in the space L(E), Sib. Mat. Zh. 4, 673–682 [Russian]. Zbl. 204, 438Google Scholar
  206. Sobolev, S. L. [1974] Introduction to the theory of cubature formulae Nauka, Moscow [Russian]. Zbl. 294,65013 Solonnikov, V. A.Google Scholar
  207. Sobolev, S. L. [ 1960 ] On some properties of the space MP of fractional order, Dokl. Akad. Nauk SSSR 134, 282–285. Zbl. 133, 70. English translation: Soy. Math., Dokl. 1, 1071–1074 (1960)Google Scholar
  208. Sobolev, S. L. [ 1972 ] On some inequalities for functions in the classes Wp(R“), Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. Steklova 27, 194–210. Zbl. 339.46025. English translation: J. Soy. Math. 3, 549–564 (1975)Google Scholar
  209. Stein, E. M. [ 1970 ] Singular integrals and differentiability properties of functions. Princeton University Press, Princeton. Zbl. 207, 135 (Russian translation: Mir, Moscow 1973 )Google Scholar
  210. Stein, E. M., Weiss, G. [ 1971 ] Introduction to Fourier analysis on Euclidean spaces. Princeton University Press, Princeton. Zbl. 232, 42007Google Scholar
  211. Tandit, B. V. [1980a] On traces of functions on weighted spaces, Funktsional. Anal. i Prilozhen. 14$183–85. Zbl. 462.42012. English translation: Func. Anal. Appl. 14, 317–319 (1981)MATHCrossRefGoogle Scholar
  212. Tandit, B. V. [1980b] Boundedness properties of functions in the space WP 0, Tr. Mat. Inst. Steklova 156, 223–232. Zbl. 457.46032. English translation: Proc. Steklov Inst. Math. 156, 245–254 (1983)MATHGoogle Scholar
  213. Tandit, B. V. [1980c] On the traces of functions in the class WPB, Differ. Uravn. 16, 2062–2074. Zbl. 462.46022. English translation: 16, 1321–1329 (1981)MATHGoogle Scholar
  214. Terekhin, A. P. [1979] Mixed q-integral p-variation and theorems on equivalence and imbedding of classes of functions with mixed moduli of smoothness, Tr. Mat. Inst. Steklova 150$1306–319. Zbl. 416.46018. English translation: Proc. Steklov Inst. Math. 150, 323–336 (1981)MATHGoogle Scholar
  215. Thorin, G. O. [1948] Convexity theorems generalizing those of M. Riesz and Hadamard with some applications. Thesis, Lund (also: Commun. Semin. Math. Univ. Lund 9, 1–58). Zbl. 34, 204Google Scholar
  216. Triebel, H. [ 1973 ] Interpolation theory for function spaces of Besov type defined in domains, I, II, Math. Nachr. 57, 51–85; 58, 63–86. Zbl. 282.46023; Zbl. 282. 46024Google Scholar
  217. Triebel, H. [1975] Interpolation properties of e-capacity and of diameters. Geometric characteristics of the imbedding of function spaces of Sobolev-Besov type, Mat. Sb. Nov. Ser. 98$127–41. Zbl. 312.46043. English translation: Math. USSR, Sb. 27, 23–37 (1977)MATHCrossRefGoogle Scholar
  218. Triebel, H. [ 1976 ] Spaces of Kudrjavcev type, I, II, Math. Anal. Appl. 56, 253–277; 278–287. Zbl. 345.46031; Zbl. 345. 46032Google Scholar
  219. Triebel, H. [ 1977 ] Fourier analysis and function spaces. (Teubner-Texte Math. 7) Teubner, Leipzig. Zbl. 345. 42003Google Scholar
  220. Triebel, H. [ 1978a ] Spaces of Besov-Hardy-Sobolev-type. (Teubner-Texte Math. 15) Teubner, Leipzig. Zbl. 408. 46024Google Scholar
  221. Triebel, H. [ 1978b ] On Besov-Hardy-Sobolev spaces in domains and regular elliptic boundary value problems. The case 0 p oo, Commun. Partial Diff. Equations 3, 1083–1164. Zbl. 403. 35034Google Scholar
  222. Triebel, H. [ 1978c ] Interpolation theory. Function spaces. Differential operators. Deutsch. Verl. Wiss., Berlin. Zbl. 387. 46033Google Scholar
  223. Triebel, H. [ 1983 ] Theory of function spaces. Birkhäuser, Basel - Boston - Stuttgart; Akademische Ver1.Ges., Leipzig. Zbl. 546. 46027CrossRefGoogle Scholar
  224. Troisi, M. [ 1969 ] Problemi elliptici con dati singolari. Ann. Mat. Pura Appl. 83, 363–407. Zbl. 194, 419 Ul’yanov, P. L.Google Scholar
  225. Troisi, M. [1967] On the imbedding of some function spaces, Mat. Zametki 1$1405–414. Zbl. 165, 389. English translation: Math. Notes 1, 270–276 (1968)Google Scholar
  226. Troisi, M. [ 1968 ] Imbedding of some function classes H;;’, Izv. Akad Nauk SSSR Ser. Mat. 32, 649–686. Zbl. 176, 433. English translation: Math. USSR, Izv. 2, 601–637 (1969)Google Scholar
  227. Uspenskii, S. V. [1961] On imbedding theorems for weighted classes, Tr. Mat. Inst. Steklova 60, 282–303. Zbl. 119, 101. English translation: Transi., II. Ser., Am. Math. Soc. 87, 121–145 (1970)Google Scholar
  228. Uspenskii, S. V. [1966] Imbedding and extension theorems for a class of spaces, I-II, Sib. Mat. Zh. 7, 192–199; 409–418. Zbl. 152, 128. English translation: Sib. Math. J. 7, 154–161; 333–342 (1966)Google Scholar
  229. Uspenskii, S. V. [ 1967 ] On mixed derivatives of functions summable with respect to a weight, Differ. Uravn. 3, 139–154. Zbl. 152, 129. English translation: Differ. Equations 3, 70–77 (1971)Google Scholar
  230. Uspenskii, S. V., Deminenko, G. B., Perepelkin, V. G. [ 1984 ] Imbedding theorems and applications to differential equations. Nauka, Novosibirsk [Russian]. Zbl. 575. 46030Google Scholar
  231. Vasharin, A. A. [ 1959 ] Boundary properties of function in the class WI. and their applications to the solution of a boundary problem in mathematical physics, Izv. Akad. Nauk SSSR, Ser. Mat. 23, 421–454 [Russian]. Zbl. 92, 102Google Scholar
  232. Yakovlev, G. N. [ 1961 ] Boundary properties of a class of functions, Tr. Mat. Inst. Steklova 60, 325–349 [Russian]. Zbl. 116, 316Google Scholar
  233. Yakovlev, G. N. [ 1967 ] On traces of functions in the space WP on piecewise smooth surfaces, Mat. Sb. Nov. Ser. 74, 526–543. Zbl. 162, 448. English translation: Math. USSR, Sb. 3, 481–497 (1969)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • L. D. Kudryavtsev
  • S. M. Nikol’skiĭ

There are no affiliations available

Personalised recommendations