Oxide Ion Conductors for Solid Oxide Fuel Cells

  • Osamu Yamamoto
  • Takayuki Kawahara
  • Kazushige Kohno
  • Yasuo Takeda
  • Nobuyuki Imanshi
Conference paper

Abstract

This paper reviews the electrical properties of the stabilized zirconia with high mechanical strength and toughness. These oxide ion conductors are attractive for the electrolyte of the self-supported planar type solid oxide fuel cells(SOFC). The electrical conductivity of the tetragonal stabilized zirconia(TZP), which has high bending strength of 1200MPa, was measured to be 6.5x10−2S/cm at 1,000°C. The electrical and mechanical properties of the composites of cubic stabilized zirconia and alumina were examined. The 20 weight% Al2O3 and 80 weight% stabilized zirconia with 8 mole% Y2O3 showed improved mechanical strength and only slight decrease in electrical conductivity.

Keywords

Migration Zirconia Fluorite Yttria Vale 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    W.Nernst, Z.Elektrochem., 6, 41 (1899)Google Scholar
  2. (2).
    E.Bauer and H.Preis, Z.Electrochem., 43, 727 (1937)Google Scholar
  3. (3).
    T.Takahashi, K.Ito and H.Iwahara, Rev.Energy.Primaire, 2 27 (1966)Google Scholar
  4. (4).
    O.Yamamoto, M.Dokiya, and H.Tagawa,Eds.“proceedings of the International Symposium on Solid Oxide Fuel Cells”, SOFC Soc. of Japan (1990)Google Scholar
  5. (5).
    B.C.H.Steele, “Ceramic Electrochemical Reactors”, Ceramionics (1987)Google Scholar
  6. (6).
    C.Pascula and P.Duran, J.Am.Cerm.Soc., 66 23 (1983)Google Scholar
  7. (7).
    T.K.Gupta, J.H.Bechtold, R.C.Kuzunickl, L.H.Cadoft and B.R.Rossing,J.Mat.Sci., 128, 929 (1981)Google Scholar
  8. (8).
    T.K.Gupta, R.B.Gvekila, and E.C.Subbarao, J.Electrochem.Soc., 128, 929 (1981)CrossRefGoogle Scholar
  9. (9).
    S.P.S.Badwal and M.V.Swain, J.Mat.Sci.Lett., 4, 487 (1985)Google Scholar
  10. (10).
    O.Yamamoto, Y.Takeda, R.Kanno, K.Kohno, and T.Kamiharai, J.Mat.Sci.Lett8198(1989)Google Scholar
  11. (11).
    E.Shouler, G.Giround, and M.Kleitz, J.Chim.Phys.Phisiochim.Biol., 70, 1309 (1973)Google Scholar
  12. (12).
    O.Yamamoto, Y.Takeda, R.Kanno, and K.Kohno, J.Mat.Sci., 25, 2805 (1990)ADSCrossRefGoogle Scholar
  13. (13).
    R.E.Carter and W.L.Roth,“EMF Mesurement in High Temperature Systems.” ed. by C.B.Alock,P125(1968)Google Scholar
  14. (14).
    M.Kleitz, H.Bernard, E.Fernandes, and E.Shouler, Advance in Ceramics, vol.3, ed. by A.H.Heuer and L.W.Hobbs, P.310(1981)Google Scholar
  15. (15).
    K.Tsukuma, Thesis, Osaka University(1986)Google Scholar
  16. (16).
    M.J.Verkerk, A.J.A.Winnubst and A.J.Buggraat, J.Mat.Sci., 17, 3113 (1982)Google Scholar
  17. (17).
    K.Kobayashi, H.Kawajima and T.Masaki, Solid State Ionics,3/4,489(1981)Google Scholar
  18. (18).
    E.Ishizaki, T.Yoshida, and S.Sakurada, “Proceedings of Electrochem. Soc. Fall Meeting”,P3(1989)Google Scholar
  19. (19).
    K.Mastusue, Y.Fujisawa and T.Takuhara, Yogyo—Kyokai—shi,91, 59(1983)Google Scholar
  20. (20).
    H.Bernard, Rep.CEA—R-500, CEN—Saclay, France (1981)Google Scholar
  21. (21).
    E.P.Butler and J.Drennan, J.Am.Ceram.Soc., 65, 474 (1982)Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Osamu Yamamoto
    • 1
  • Takayuki Kawahara
    • 1
  • Kazushige Kohno
    • 1
  • Yasuo Takeda
    • 1
  • Nobuyuki Imanshi
    • 1
  1. 1.Department of Chemistry, Faculty of EngineeringTSU514 Japan

Personalised recommendations