Advertisement

Stoichiometry Control of Compound Semiconductor Crystals

  • Jun-ichi Nishizawa

Abstract

Most important factor to be controlled in compound semiconductor crystals is the deviation from the stoichiometric composition. Electrical, optical and crystallographic evaluation are applied to the GaAs samples prepared by annealing under controlled As vapor pressure. It is shown that the crystal imperfection and the deviation from the stoichiometric composition are reduced to be minimum under a specific As vapor pressure (optimum As vapor pressure; PAs,opt). PAs,opt is obtained to be similar regardless of the difference of dopant species, dopant concentration and conductivity type. Optimum vapor pressure is also obtained in other compound semiconductor crystals including GaP etc. The deviation from the stoichiometric composition affects the amphoteric manner of Si in GaAs. Vapor pressure control is also applied to the liquid phase epitaxy (LPE) in combination with the temperature difference method (TDM-CVP), and almost the same results are obtained. Temperature dependence of the optimum vapor pressure is almost the same both in annealing and LPE experiments. It confirms that the applying vapor pressure controls the composition of segregated crystals directly through the solution in LPE. Various methods including Rutherford backscattering (RBS) technique are applied to investigate the excess As atom-related defects in GaAs. The experimental results of crystal weight and X-ray anomalous transmission intensity measurements directly suggest the existence of interstitial As atoms. The RBS measurements with glazing exit angle configuration show the existence of the interstitial As atoms in As+-implanted GaAs, and clarify the stable interstitial sites to be <100> split and relaxed- bond center (r-BC) interstitialcy. Formation energy of excess As atom-related defects is determined to be 0.9–1.16eV by both the lattice constant measurements and the PHCAP measurements independently.

Keywords

Vapor Pressure Level Density Stoichiometric Composition Liquid Phase Epitaxy GaAs Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Y.Watanabe, J.Nishizawa and I.Sunagawa, Kagaku, vol21(3), p.p.140–141, Iwanami (1951)Google Scholar
  2. 2).
    H.Otsuka, K.Ishida and J.Nishizawa, Jpn. J. Appl. Phys., 8, 632 (1969)Google Scholar
  3. 3).
    Y.Okuno, K.Suto and J.Nishizawa, J. Appl. Phys., 44, 832 (1973)Google Scholar
  4. 4).
    J.Nishizawa, H.Otsuka, S.Yamakoshi and K.Ishida, Jpn. J. Appl. Phys., 13, 46 (1974)ADSCrossRefGoogle Scholar
  5. 5).
    S.Yamakoshi, Doctor Thesis, Tohoku University (1975) supervised by Prof. Nishizawa J.Nishizawa, N.Toyama, Y.Oyama and K.Inokuchi, Proc. of the 3rd International School on Semiconductor Optoelectronics, Cetniewo, ed. by Marian A. Herman, PWN-Polish Scientific Publishers (Warszawa, 1980) p.p. 27–77 (1980)Google Scholar
  6. 6).
    J.Nishizawa, I.Shiota and Y.Oyama, J. Phys. C: Solid State Phys., 9, 1 (1986)ADSCrossRefGoogle Scholar
  7. 7).
    J.Nishizawa, Y.Oyama and K.Dezaki, J. Appl. Phys., 67 (4), 1884 (1990)CrossRefGoogle Scholar
  8. 8).
    J.Nishizawa, Y.Oyama and K.Dezaki, Phys. Rev. Lett., 65, 2555 (1990)ADSCrossRefGoogle Scholar
  9. 9).
    I.Fujimoto, Jpn. J. Appl. Phys., 23, L287 (1984)ADSCrossRefGoogle Scholar
  10. 10).
    HJ. von Bardeleben, J.C.Bourgoin, D.Steivenard and M.Lannoo, Proc. of International Symp. GaAs and Related Compounds, Heraklion, Greece, 399 (1987)Google Scholar
  11. J.-M Spaeth, D.M.Hofmann, M.Heinemann and B.K.Meyer, ibid, 391 (1987)Google Scholar
  12. 11).
    J.Nishizawa, Y.Okuno and H.Tadano, J. Crystal Growth, 31, 215 (1975)ADSCrossRefGoogle Scholar
  13. 12).
    J.Nishizawa and Y.Okuno, IEEE Trans. Electron Device, ED-22, 716 (1975)Google Scholar
  14. 13).
    K.Tomizawa, K.Sassa, Y.Shimanuki and J.Nishizawa, J. Electrochem. Soc., 131, 2394 (1984)CrossRefGoogle Scholar
  15. 14).
    J.Nishizawa, K.Itoh, Y.Okuno, M.Koike and T.Teshima, Proc. IEEE International Electron Devices Meeting (IEDM),p.p. 311–314 (1983)Google Scholar
  16. 15).
    J.Nishizawa, Y.Okuno, M.Koike and F.Sakurai, Jpn. J. Appl. Phys., 19, 377 (1980)CrossRefGoogle Scholar
  17. 16).
    J.Nishizawa, K.Itoh, Y.Okuno and F.Sakurai, J. Appl. Phys., 57, 2210 (1985)CrossRefGoogle Scholar
  18. 17).
    R.E.Honig, RCA Rev., 30, 285 (1969)Google Scholar
  19. 18).
    A.Itoh, T.Sukegawa and J.Nishizawa, Tech. Report of Transistor Specialist Committee, ME Japan (Jan. 1967)Google Scholar
  20. A.Itoh, T.Sukegawa and J.Nishizawa, Tech. Report of Research Institute of Electrical Communication, Tohoku University, TR-32 (Feb. 1969)Google Scholar
  21. 19).
    Y.Oyama, Denshi Tokyo (IEEE Tokyo), 28, 130 (1989)Google Scholar
  22. 20).
    A.L.Lin, E.Omelianovski and R.H.Bube, J. Appl. Phys., 47, 1852 (1976)CrossRefGoogle Scholar
  23. 21).
    J.Nishizawa, Y.Oyama and KDezaki, J. Appl. Phys., 69 (3), 1446 (1991)CrossRefGoogle Scholar
  24. 22).
    J.Nishizawa, Y.Oyama and K. Dezaki, to be published in J. Appl. Phys., (1991)Google Scholar
  25. 23).
    J.Nishizawa, Y.Oyama and K.Dezaki, to be published in J. Phys. Condensed Matter, (1991)Google Scholar
  26. 24).
    K. Suto and J.Nishizawa, J. Appl. Phys., 67 (1), 459 (1990)CrossRefGoogle Scholar
  27. 25).
    J.Nishizawa and Y.Okuno, Proc. of 2nd International School on Semiconductor Optoelectronics, Cetniewo, ed. by Marian A. Herman, PWN-Polish Scientific Publishers (Warszawa, 1978), p.p.101–130Google Scholar
  28. 26).
    E.Omura, X.X.Wu, G.A.Vawter, L.Coldren, E.Hu and J.L.Merz, Electron. Lett., 22, 496 (1986)CrossRefGoogle Scholar
  29. 27).
    K.H.Bennemann, Phys. Rev., 137, A1497 (1961)MathSciNetCrossRefGoogle Scholar
  30. 28).
    R.A.Swalin, J. Phys. Chem. solids, 18, 290 (1961)ADSCrossRefGoogle Scholar
  31. 29).
    T.Suzuki and S.Akai, Bussei, 144, 12 (1971)Google Scholar
  32. 30).
    J.M.Parsey Jr, Y.Nanishi, J.Lagowski and H.C.Gatos, J. Electrochem. Soc., 128, 937 (1981)Google Scholar
  33. 31).
    FZ grown GaAs crystals were supplied from the Tohoku Steel Co’Ltd, Sendai JapanGoogle Scholar
  34. 32).
    J.Nishizawa and KSuto, J. Appl. Phys., 51 (5), 2429 (1980)CrossRefGoogle Scholar
  35. 33).
    K.Suto, S.Ogasawara, T.Kimura and J.Nishizawa, J. Appl. Phys., 66 (11), 5151 (1989)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Jun-ichi Nishizawa
    • 1
  1. 1.Semiconductor Research InstituteSemiconductor Research FoundationSendai Aoba-ku 980Japan

Personalised recommendations