Silicon pp 477-488 | Cite as

Carbon Nanotube Applications in Microelectronics

  • W. Hoenlein
  • F. Kreupl
  • G. S. Duesberg
  • A. P. Graham
  • M. Liebau
  • R. Seidel
  • E. Unger


The extraordinary characteristics of carbon nanotubes make them a promising candidate for applications in microelectronics. Catalyst-mediated CVD growth is very well suited for selective, in situ growth of nanotubes compatible with the requirements of microelectronics technology. This deposition method can be exploited for carbon nanotube vias. Semiconducting singlewalled tubes can be successfully operated as carbon nanotube field effect transistors (CNTFETs). A simulation of an ideal CNTFET is presented and compared with the requirements of the ITRS Roadmap. Finally, we compare an upgraded CNTFET with the most advanced silicon MOSFETs.


Contact Resistance Silicon Device Zigzag Configuration Silicon MOSFETs IEDM Technical 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. lijima: Helical microtubules of graphitic carbon. Nature 354, 56 (1991)CrossRefGoogle Scholar
  2. 2.
    R.H. Baughman, A.A. Zakhidov, W.A. de Heer: Carbon nanotubes-the route toward applications. Science 297, 787 (2002)CrossRefGoogle Scholar
  3. 3.
    P.G. Collins, P. Avouris: Nanotubes for electronics. Sci. Am. 12, 62 (2000)CrossRefGoogle Scholar
  4. 4.
    J.W. Mintmire, C.T. White: Universal density of states for carbon nanotubes. Phys. Rev. Lett. 81 (12), 2506 (1998)CrossRefGoogle Scholar
  5. 5.
    B.Q. Wei, R. Vajtai, P.M. Ajayan: Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Lett. 79 (8), 1172 (2001)CrossRefGoogle Scholar
  6. 6.
    R. Saito, G. Dresselhaus, M.S. Dresselhaus: Physical Properties of Carbon Nanotubes ( Imperial College Press, London 1998 )CrossRefGoogle Scholar
  7. 7.
    H. Dai: Carbon nanotubes: synthesis, integration, and properties. Acc. Chem. Res. 35, 1035 (2002)CrossRefGoogle Scholar
  8. 8.
    W. Steinhoegl, G. Schindler, G. Steinlesberger, M. Engelhardt: Size-dependent resistivity of metallic wires in the mesoscopic range. Phys. Rev. B 66, 075414 (2002)Google Scholar
  9. 9.
    W. Hoenlein: New prospects for microelectronics: carbon nanotubes. Jpn. J. Appl. Phys. 41, 4370 (2002)CrossRefGoogle Scholar
  10. 10.
    D.S. Duesberg, A.P. Graham, M. Liebau, R. Seidel, E. Unger, F. Kreupl, W. Hoenlein: Growth of isolated carbon nanotubes with lithographically defined diameter and location. Nano Lett. (2003), Scholar
  11. 11.
    M. Engelhardt, G. Schindler, K. Mosig, G. Steinlesberger, W. Steinhoegl, G. Gebara: Extending copper metallization technology for wiring to end-of-theroadmap feature sizes. Conference Proceedings Advanced Metallization Conference, Montreal (2001) pp. 11–17Google Scholar
  12. 12.
    S.J. Tans, A.R.M. Verschueren, C. Dekker: Room-temperature transistor based on a single carbon nanotube. Nature 393, 49 (1998)CrossRefGoogle Scholar
  13. 13.
    A. Bachthold, P. Hadley, T. Nakanishi, C. Dekker: Logic circuits with carbon nanotube transistors. Science 294, 1317 (2001)CrossRefGoogle Scholar
  14. 14.
    S.J. Wind, J. Appenzeller, R. Martel, V. Derycke, P. Avouris: Fabrication and electrical characterization of top gate single-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 80, 3817 (2002)CrossRefGoogle Scholar
  15. 15.
    V. Derycke, L. Martel, J. Appenzeller, P. Avouris: Carbon nanotube inter-and intramolecular gates. Nano Lett. 9, 453 (2001)CrossRefGoogle Scholar
  16. 16.
    J. Guo, M. Lundstrom, S. Datta: Performance projections for ballistic carbon nanotube field-effect transistors. Appl. Phys. Lett. 80, 3192 (2002)CrossRefGoogle Scholar
  17. 17.
    A. Javey, H. Kim, M. Brink, Q. Wang, A. Ural, J. Guo, P. McIntyre, P. McEuen, M. Lundstrom, H. Dai: High-K dielectrics for advanced carbon nano-tube transistors and logic gates. Nature Mater. 1, 241 (2002)CrossRefGoogle Scholar
  18. 18.
    German Patent DE 0010036897 Cl (2000)Google Scholar
  19. 19.
    S. Rosenblatt, Y. Yaish, J. Park, J. Gore, V. Sazonova, P. McEuen: High performance electrolyte gated carbon nanotube transistors. Nano Lett. 2, 869 (2002)CrossRefGoogle Scholar
  20. 20.
    T. Ghani, S. Ahmed, P. Aminzadeh, J. Bielefeld, P. Charvat, C. Chu, M. Harper, P. Jacob, C. Jan, J. Kavalieros, C. Kenyon, R. Nagisetty, P. Packan, J. Sebastian, M. Taylor, J. Tsai, S. Tyagi, S. Yang, M. Bohr: 100 nm gate length high performance/low power CMOS transistor structure. IEDM Technical Digest (1999) pp. 415–419Google Scholar
  21. 21.
    B. Yu, L. Chang, S. Ahmed, H. Wang, S. Bell, C. Yang, C. Tabery, C. Ho, Q. Xiang, T. King, J. Bokor, C. Hu, M. Lin, D. Kyser: FinFET scaling to 10 nm gate length. IEDM Technical Digest (2002) pp. 251–254Google Scholar
  22. 22.
    B. Doris, M. Ieong, T. Kanarsky, Y. Zhang, R.A. Roy, O. Dokumaci, Z. Ren, F. Jamin, L. Shi, W. Natzle, H. Huang, J. Mezzapelle, A. Mocuta, S. Womack, M. Gibelyuk, E.C. Jones, R.J. Miller, H.P. Wong, W. Haensch: Extreme scaling with ultra-thin Si channel MOSFETs. IEDM Technical Digest (2002) pp. 267 — 270Google Scholar
  23. 23.

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • W. Hoenlein
  • F. Kreupl
  • G. S. Duesberg
  • A. P. Graham
  • M. Liebau
  • R. Seidel
  • E. Unger

There are no affiliations available

Personalised recommendations