Silicon pp 293-339 | Cite as

Power Semiconductor Devices

  • A. Porst


The most important step in the history of semiconductor devices was the discovery of the transistor effect in a semiconductor material by Bardeen and Brattain [1] and Shockley [2] at the end of the 1940s. This invention stimulated the further development of power semiconductor devices. Efforts were undertaken to realize the effects that were predicted to occur when a p-type (acceptor-doped) and an n-type (donor-doped) region were placed close together in a semiconductor material.


Gate Voltage Middle Region Bipolar Transistor Gate Current Gate Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Bardeen, W.H. Brattain: The transistor, a semiconductor triode. Phys. Rev. 74, 230 (1948)CrossRefGoogle Scholar
  2. 2.
    W. Shockley: The theory of p—n junctions in semiconductors and p—n junction transistors. Bell Syst. Tech. J. 28, 435 (1949)Google Scholar
  3. 3.
    R.N. Hall: Power rectifiers and transistors. Proc. IRE 40, 1512 (1952)CrossRefGoogle Scholar
  4. 4.
    J.L. Moll, M. Tanenbaum, J.M. Goldey, N. Holonyak: PNPN-transistor switches. Proc. IRE 44, 1174 (1956)CrossRefGoogle Scholar
  5. 5.
    T. Nagano, M. Okamura, T. Ogawa: A high-power, low-forward-drop gate turn-off thyristor. Conf. Rec. IEEE-IAS, 1003 (1978)Google Scholar
  6. 6.
    M. Azuma, A. Nakagawa, K. Takigama: High power gate turn-off thyristors. Japan. J. Appl. Phys. 17–1, 275 (1978)Google Scholar
  7. 7.
    J. Tihanyi, P. Huber, J.P. Stengl: Switching performance of vertical Siemens power MOSFETs. IEDM Tech. Digest, 692 (1979)Google Scholar
  8. 8.
    V.A.K. Temple, P. V. Gray: Theoretical comparison of DMOS and VMOS structures for voltage and on-resistance. IEDM Tech. Digest, 88 (1979)Google Scholar
  9. 9.
    H.W. Becke, C.F. Wheatley: Power MOSFET with an anode region. U.S. Patent 4,634,073, issued Dec. 1982Google Scholar
  10. 10.
    J.P. Russell, A.M. Goodman, L.A. Goodman, J.M. Neilson: The COMFET — a new high conductance MOS-gated device. IEEE Electron Device Lett. EDL-4, 63 (1983)Google Scholar
  11. 11.
    B.J. Baliga, M.S. Adler, P.V. Gray, R.P. Love, N. Zommer: The insulated gate rectifier (IGR): a new power switching device. IEDM Tech. Digest, 264 (1982)Google Scholar
  12. 12.
    A. Nakagawa, T. Tsukakoshi, H. Ohashi: High voltage bipolar-mode MOSFET’s with high current capability. Ext. Abstr. 16th Conf. Solid State Devices and Materials (1984) pp. 309–312Google Scholar
  13. 13.
    S. Sze: Physics of Semiconductor Devices ( Wiley, New York 1981 )Google Scholar
  14. 14.
    H. Benda, E. Spenke: Reverse recovery processes in silicon power rectifiers. Proc. IEEE 55, 1331 (1967)CrossRefGoogle Scholar
  15. 15.
    G. Deboy, G. Sölkner, E. Wolfgang, W. Claeys: Absolute measurement of transient carrier concentration and temperature gradients in power semiconductor devices by internal IR-laser deflection. Microelectron Eng. 31, 299 (1996)CrossRefGoogle Scholar
  16. 16.
    A. Herlet: Maximum blocking capability of silicon thyristors. Solid State Electron. 8, 655 (1965)CrossRefGoogle Scholar
  17. 17.
    M. Schnöller: Breakdown behavior of rectifiers and thyristors made from striation-free silicon. IEEE Trans. Electron Devices ED-21, 313 (1974)Google Scholar
  18. 18.
    K. Platzöder, K. Loch: High-voltage thyristors and diodes made of neutron-irradiated silicon. IEEE Trans. Electron Devices ED-23, 805 (1976)Google Scholar
  19. 19.
    A. Herlet, K. Raithel: Forward characteristics of thyristors in the fired state. Solid State Electronics 9, 1089 (1966)CrossRefGoogle Scholar
  20. 20.
    W.H. Dodson, R.L. Longini: Probed determination of turn-on spread of large area thyristors. IEEE Trans. Electron Devices ED-13, 478 (1966)Google Scholar
  21. 21.
    I. Somos, D.E. Piccone: Some observations of static and dynamic plasma spread in conventional and new power thyristors. IEE Conf. Rec. 53, 1 (1969)Google Scholar
  22. 22.
    F.E. Gentry, J. Moyson: The amplifying gate thyristor. Proc. IEDM (1968) p. 110Google Scholar
  23. 23.
    A. Herlet, P. Voss: State of the art in power semiconductor design. Conf. Rec. IEEE-IAS Int. Semicond. Power Cony. Conf. (1977) pp. 7–23Google Scholar
  24. 24.
    P. Leturcq: Power devices: specific problems. ESSDERC Conf. Rec. (1975) pp. 119–153Google Scholar
  25. 25.
    H.-J. Schulze, M. Ruff, B. Baur: Light triggered 8kV thyristor with a novel integrated breakover diode. Proc. ISPSD (1996) p. 197Google Scholar
  26. 26.
    H. Gruening, B. Oedegard, A. Weber, E. Carroll, S. Eicher: High-power hard-driven GTO Module for 4,5kV/3kA snubberless operation. Proc. PCIM (1996) pp. 169–183Google Scholar
  27. 27.
    H.A. Schafft: Second breakdown — a comprehensive review. Proc. IEEE 55, 1272 (1967)CrossRefGoogle Scholar
  28. 28.
    P.L. Hower: Optimum design of power transistor switches. IEEE Trans. Electron Devices ED-20, 426 (1973)Google Scholar
  29. 29.
    C. Hu, M.J. Model: A model of power transistor turn-off dynamic. IEEE Power Electronics Specialists Conf. (1980) pp. 91–96Google Scholar
  30. 30.
    P.L. Hower: A model for turn-off in bipolar transistors. IEDM Tech. Digest (1980) pp. 289–292Google Scholar
  31. 31.
    G. Miller, A. Porst, H. Strack: An advanced high voltage bipolar power transistor with extended RBSOA using 5Em small emitter structures. Proc. IEDM (1985) pp. 142–145Google Scholar
  32. 32.
    D. Ueda, T. Takagi, G. Kano: A new vertical power MOS-FET structure with extremely reduced on-resistance. IEEE Trans. Electron Devices ED-32, 2 (1985)Google Scholar
  33. 33.
    H.R. Chang, B.J. Baliga, J.W. Kretchmer, P.A. Piacente: Insulated gate bipolar transistor (IGBT) with a trench gate structure. Proc. IEDM (1987) pp. 674–677Google Scholar
  34. 34.
    G. Miller, J. Sack: A new concept for non-punch-through IGBT with MOSFET-like switching characteristics. IEEE Power Electronics Specialists Conf. (1989) pp. 21–25Google Scholar
  35. 35.
    T. Laska, G. Miller, M. Pfaffenlehner, P. Türkes, D. Berger, B. Gutsmann, P. Kanschat, M. Münzer: Short circuit properties of trench-/field-stop-IGBTs —design aspects for a superior robustness. Proc. ISPSD (2003) pp. 152–155Google Scholar
  36. 36.
    J.G. Bauer, F. Auerbach, A. Porst, R. Roth, H. Ruething, O. Schilling: 6,5 kV-modules using IGBTs with field stop technology. Proc. ISPSD (2001) pp. 121–124Google Scholar
  37. 37.
    M. Rahimo, A. Kopta, S. Eicher, N. Kaminski, F. Bauer, U. Schlapbach, S. Linder: Extending the boundary limits of high voltage IGBTs and diodes to above 8 kV. Proc. ISPSD (2002) pp. 41–44Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • A. Porst

There are no affiliations available

Personalised recommendations