Silicon pp 293-339 | Cite as

Power Semiconductor Devices

  • A. Porst


The most important step in the history of semiconductor devices was the discovery of the transistor effect in a semiconductor material by Bardeen and Brattain [1] and Shockley [2] at the end of the 1940s. This invention stimulated the further development of power semiconductor devices. Efforts were undertaken to realize the effects that were predicted to occur when a p-type (acceptor-doped) and an n-type (donor-doped) region were placed close together in a semiconductor material.


Microwave Carbide Mercury Platinum Recombination 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Bardeen, W.H. Brattain: The transistor, a semiconductor triode. Phys. Rev. 74, 230 (1948)CrossRefGoogle Scholar
  2. 2.
    W. Shockley: The theory of p—n junctions in semiconductors and p—n junction transistors. Bell Syst. Tech. J. 28, 435 (1949)Google Scholar
  3. 3.
    R.N. Hall: Power rectifiers and transistors. Proc. IRE 40, 1512 (1952)CrossRefGoogle Scholar
  4. 4.
    J.L. Moll, M. Tanenbaum, J.M. Goldey, N. Holonyak: PNPN-transistor switches. Proc. IRE 44, 1174 (1956)CrossRefGoogle Scholar
  5. 5.
    T. Nagano, M. Okamura, T. Ogawa: A high-power, low-forward-drop gate turn-off thyristor. Conf. Rec. IEEE-IAS, 1003 (1978)Google Scholar
  6. 6.
    M. Azuma, A. Nakagawa, K. Takigama: High power gate turn-off thyristors. Japan. J. Appl. Phys. 17–1, 275 (1978)Google Scholar
  7. 7.
    J. Tihanyi, P. Huber, J.P. Stengl: Switching performance of vertical Siemens power MOSFETs. IEDM Tech. Digest, 692 (1979)Google Scholar
  8. 8.
    V.A.K. Temple, P. V. Gray: Theoretical comparison of DMOS and VMOS structures for voltage and on-resistance. IEDM Tech. Digest, 88 (1979)Google Scholar
  9. 9.
    H.W. Becke, C.F. Wheatley: Power MOSFET with an anode region. U.S. Patent 4,634,073, issued Dec. 1982Google Scholar
  10. 10.
    J.P. Russell, A.M. Goodman, L.A. Goodman, J.M. Neilson: The COMFET — a new high conductance MOS-gated device. IEEE Electron Device Lett. EDL-4, 63 (1983)Google Scholar
  11. 11.
    B.J. Baliga, M.S. Adler, P.V. Gray, R.P. Love, N. Zommer: The insulated gate rectifier (IGR): a new power switching device. IEDM Tech. Digest, 264 (1982)Google Scholar
  12. 12.
    A. Nakagawa, T. Tsukakoshi, H. Ohashi: High voltage bipolar-mode MOSFET’s with high current capability. Ext. Abstr. 16th Conf. Solid State Devices and Materials (1984) pp. 309–312Google Scholar
  13. 13.
    S. Sze: Physics of Semiconductor Devices ( Wiley, New York 1981 )Google Scholar
  14. 14.
    H. Benda, E. Spenke: Reverse recovery processes in silicon power rectifiers. Proc. IEEE 55, 1331 (1967)CrossRefGoogle Scholar
  15. 15.
    G. Deboy, G. Sölkner, E. Wolfgang, W. Claeys: Absolute measurement of transient carrier concentration and temperature gradients in power semiconductor devices by internal IR-laser deflection. Microelectron Eng. 31, 299 (1996)CrossRefGoogle Scholar
  16. 16.
    A. Herlet: Maximum blocking capability of silicon thyristors. Solid State Electron. 8, 655 (1965)CrossRefGoogle Scholar
  17. 17.
    M. Schnöller: Breakdown behavior of rectifiers and thyristors made from striation-free silicon. IEEE Trans. Electron Devices ED-21, 313 (1974)Google Scholar
  18. 18.
    K. Platzöder, K. Loch: High-voltage thyristors and diodes made of neutron-irradiated silicon. IEEE Trans. Electron Devices ED-23, 805 (1976)Google Scholar
  19. 19.
    A. Herlet, K. Raithel: Forward characteristics of thyristors in the fired state. Solid State Electronics 9, 1089 (1966)CrossRefGoogle Scholar
  20. 20.
    W.H. Dodson, R.L. Longini: Probed determination of turn-on spread of large area thyristors. IEEE Trans. Electron Devices ED-13, 478 (1966)Google Scholar
  21. 21.
    I. Somos, D.E. Piccone: Some observations of static and dynamic plasma spread in conventional and new power thyristors. IEE Conf. Rec. 53, 1 (1969)Google Scholar
  22. 22.
    F.E. Gentry, J. Moyson: The amplifying gate thyristor. Proc. IEDM (1968) p. 110Google Scholar
  23. 23.
    A. Herlet, P. Voss: State of the art in power semiconductor design. Conf. Rec. IEEE-IAS Int. Semicond. Power Cony. Conf. (1977) pp. 7–23Google Scholar
  24. 24.
    P. Leturcq: Power devices: specific problems. ESSDERC Conf. Rec. (1975) pp. 119–153Google Scholar
  25. 25.
    H.-J. Schulze, M. Ruff, B. Baur: Light triggered 8kV thyristor with a novel integrated breakover diode. Proc. ISPSD (1996) p. 197Google Scholar
  26. 26.
    H. Gruening, B. Oedegard, A. Weber, E. Carroll, S. Eicher: High-power hard-driven GTO Module for 4,5kV/3kA snubberless operation. Proc. PCIM (1996) pp. 169–183Google Scholar
  27. 27.
    H.A. Schafft: Second breakdown — a comprehensive review. Proc. IEEE 55, 1272 (1967)CrossRefGoogle Scholar
  28. 28.
    P.L. Hower: Optimum design of power transistor switches. IEEE Trans. Electron Devices ED-20, 426 (1973)Google Scholar
  29. 29.
    C. Hu, M.J. Model: A model of power transistor turn-off dynamic. IEEE Power Electronics Specialists Conf. (1980) pp. 91–96Google Scholar
  30. 30.
    P.L. Hower: A model for turn-off in bipolar transistors. IEDM Tech. Digest (1980) pp. 289–292Google Scholar
  31. 31.
    G. Miller, A. Porst, H. Strack: An advanced high voltage bipolar power transistor with extended RBSOA using 5Em small emitter structures. Proc. IEDM (1985) pp. 142–145Google Scholar
  32. 32.
    D. Ueda, T. Takagi, G. Kano: A new vertical power MOS-FET structure with extremely reduced on-resistance. IEEE Trans. Electron Devices ED-32, 2 (1985)Google Scholar
  33. 33.
    H.R. Chang, B.J. Baliga, J.W. Kretchmer, P.A. Piacente: Insulated gate bipolar transistor (IGBT) with a trench gate structure. Proc. IEDM (1987) pp. 674–677Google Scholar
  34. 34.
    G. Miller, J. Sack: A new concept for non-punch-through IGBT with MOSFET-like switching characteristics. IEEE Power Electronics Specialists Conf. (1989) pp. 21–25Google Scholar
  35. 35.
    T. Laska, G. Miller, M. Pfaffenlehner, P. Türkes, D. Berger, B. Gutsmann, P. Kanschat, M. Münzer: Short circuit properties of trench-/field-stop-IGBTs —design aspects for a superior robustness. Proc. ISPSD (2003) pp. 152–155Google Scholar
  36. 36.
    J.G. Bauer, F. Auerbach, A. Porst, R. Roth, H. Ruething, O. Schilling: 6,5 kV-modules using IGBTs with field stop technology. Proc. ISPSD (2001) pp. 121–124Google Scholar
  37. 37.
    M. Rahimo, A. Kopta, S. Eicher, N. Kaminski, F. Bauer, U. Schlapbach, S. Linder: Extending the boundary limits of high voltage IGBTs and diodes to above 8 kV. Proc. ISPSD (2002) pp. 41–44Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • A. Porst

There are no affiliations available

Personalised recommendations