Skip to main content

Power Semiconductor Devices

  • Chapter
Silicon
  • 1025 Accesses

Abstract

The most important step in the history of semiconductor devices was the discovery of the transistor effect in a semiconductor material by Bardeen and Brattain [1] and Shockley [2] at the end of the 1940s. This invention stimulated the further development of power semiconductor devices. Efforts were undertaken to realize the effects that were predicted to occur when a p-type (acceptor-doped) and an n-type (donor-doped) region were placed close together in a semiconductor material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Bardeen, W.H. Brattain: The transistor, a semiconductor triode. Phys. Rev. 74, 230 (1948)

    Article  Google Scholar 

  2. W. Shockley: The theory of p—n junctions in semiconductors and p—n junction transistors. Bell Syst. Tech. J. 28, 435 (1949)

    Google Scholar 

  3. R.N. Hall: Power rectifiers and transistors. Proc. IRE 40, 1512 (1952)

    Article  Google Scholar 

  4. J.L. Moll, M. Tanenbaum, J.M. Goldey, N. Holonyak: PNPN-transistor switches. Proc. IRE 44, 1174 (1956)

    Article  Google Scholar 

  5. T. Nagano, M. Okamura, T. Ogawa: A high-power, low-forward-drop gate turn-off thyristor. Conf. Rec. IEEE-IAS, 1003 (1978)

    Google Scholar 

  6. M. Azuma, A. Nakagawa, K. Takigama: High power gate turn-off thyristors. Japan. J. Appl. Phys. 17–1, 275 (1978)

    Google Scholar 

  7. J. Tihanyi, P. Huber, J.P. Stengl: Switching performance of vertical Siemens power MOSFETs. IEDM Tech. Digest, 692 (1979)

    Google Scholar 

  8. V.A.K. Temple, P. V. Gray: Theoretical comparison of DMOS and VMOS structures for voltage and on-resistance. IEDM Tech. Digest, 88 (1979)

    Google Scholar 

  9. H.W. Becke, C.F. Wheatley: Power MOSFET with an anode region. U.S. Patent 4,634,073, issued Dec. 1982

    Google Scholar 

  10. J.P. Russell, A.M. Goodman, L.A. Goodman, J.M. Neilson: The COMFET — a new high conductance MOS-gated device. IEEE Electron Device Lett. EDL-4, 63 (1983)

    Google Scholar 

  11. B.J. Baliga, M.S. Adler, P.V. Gray, R.P. Love, N. Zommer: The insulated gate rectifier (IGR): a new power switching device. IEDM Tech. Digest, 264 (1982)

    Google Scholar 

  12. A. Nakagawa, T. Tsukakoshi, H. Ohashi: High voltage bipolar-mode MOSFET’s with high current capability. Ext. Abstr. 16th Conf. Solid State Devices and Materials (1984) pp. 309–312

    Google Scholar 

  13. S. Sze: Physics of Semiconductor Devices ( Wiley, New York 1981 )

    Google Scholar 

  14. H. Benda, E. Spenke: Reverse recovery processes in silicon power rectifiers. Proc. IEEE 55, 1331 (1967)

    Article  Google Scholar 

  15. G. Deboy, G. Sölkner, E. Wolfgang, W. Claeys: Absolute measurement of transient carrier concentration and temperature gradients in power semiconductor devices by internal IR-laser deflection. Microelectron Eng. 31, 299 (1996)

    Article  CAS  Google Scholar 

  16. A. Herlet: Maximum blocking capability of silicon thyristors. Solid State Electron. 8, 655 (1965)

    Article  Google Scholar 

  17. M. Schnöller: Breakdown behavior of rectifiers and thyristors made from striation-free silicon. IEEE Trans. Electron Devices ED-21, 313 (1974)

    Google Scholar 

  18. K. Platzöder, K. Loch: High-voltage thyristors and diodes made of neutron-irradiated silicon. IEEE Trans. Electron Devices ED-23, 805 (1976)

    Google Scholar 

  19. A. Herlet, K. Raithel: Forward characteristics of thyristors in the fired state. Solid State Electronics 9, 1089 (1966)

    Article  Google Scholar 

  20. W.H. Dodson, R.L. Longini: Probed determination of turn-on spread of large area thyristors. IEEE Trans. Electron Devices ED-13, 478 (1966)

    Google Scholar 

  21. I. Somos, D.E. Piccone: Some observations of static and dynamic plasma spread in conventional and new power thyristors. IEE Conf. Rec. 53, 1 (1969)

    Google Scholar 

  22. F.E. Gentry, J. Moyson: The amplifying gate thyristor. Proc. IEDM (1968) p. 110

    Google Scholar 

  23. A. Herlet, P. Voss: State of the art in power semiconductor design. Conf. Rec. IEEE-IAS Int. Semicond. Power Cony. Conf. (1977) pp. 7–23

    Google Scholar 

  24. P. Leturcq: Power devices: specific problems. ESSDERC Conf. Rec. (1975) pp. 119–153

    Google Scholar 

  25. H.-J. Schulze, M. Ruff, B. Baur: Light triggered 8kV thyristor with a novel integrated breakover diode. Proc. ISPSD (1996) p. 197

    Google Scholar 

  26. H. Gruening, B. Oedegard, A. Weber, E. Carroll, S. Eicher: High-power hard-driven GTO Module for 4,5kV/3kA snubberless operation. Proc. PCIM (1996) pp. 169–183

    Google Scholar 

  27. H.A. Schafft: Second breakdown — a comprehensive review. Proc. IEEE 55, 1272 (1967)

    Article  Google Scholar 

  28. P.L. Hower: Optimum design of power transistor switches. IEEE Trans. Electron Devices ED-20, 426 (1973)

    Google Scholar 

  29. C. Hu, M.J. Model: A model of power transistor turn-off dynamic. IEEE Power Electronics Specialists Conf. (1980) pp. 91–96

    Google Scholar 

  30. P.L. Hower: A model for turn-off in bipolar transistors. IEDM Tech. Digest (1980) pp. 289–292

    Google Scholar 

  31. G. Miller, A. Porst, H. Strack: An advanced high voltage bipolar power transistor with extended RBSOA using 5Em small emitter structures. Proc. IEDM (1985) pp. 142–145

    Google Scholar 

  32. D. Ueda, T. Takagi, G. Kano: A new vertical power MOS-FET structure with extremely reduced on-resistance. IEEE Trans. Electron Devices ED-32, 2 (1985)

    Google Scholar 

  33. H.R. Chang, B.J. Baliga, J.W. Kretchmer, P.A. Piacente: Insulated gate bipolar transistor (IGBT) with a trench gate structure. Proc. IEDM (1987) pp. 674–677

    Google Scholar 

  34. G. Miller, J. Sack: A new concept for non-punch-through IGBT with MOSFET-like switching characteristics. IEEE Power Electronics Specialists Conf. (1989) pp. 21–25

    Google Scholar 

  35. T. Laska, G. Miller, M. Pfaffenlehner, P. Türkes, D. Berger, B. Gutsmann, P. Kanschat, M. Münzer: Short circuit properties of trench-/field-stop-IGBTs —design aspects for a superior robustness. Proc. ISPSD (2003) pp. 152–155

    Google Scholar 

  36. J.G. Bauer, F. Auerbach, A. Porst, R. Roth, H. Ruething, O. Schilling: 6,5 kV-modules using IGBTs with field stop technology. Proc. ISPSD (2001) pp. 121–124

    Google Scholar 

  37. M. Rahimo, A. Kopta, S. Eicher, N. Kaminski, F. Bauer, U. Schlapbach, S. Linder: Extending the boundary limits of high voltage IGBTs and diodes to above 8 kV. Proc. ISPSD (2002) pp. 41–44

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Porst, A. (2004). Power Semiconductor Devices. In: Siffert, P., Krimmel, E.F. (eds) Silicon. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09897-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09897-4_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07356-4

  • Online ISBN: 978-3-662-09897-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics