Silicon pp 231-241 | Cite as

Neutron Transmutation Doping (NTD) of Silicon

  • M. Schnöller


For the construction of high-power devices such as the high-power thyristors that are commonly used for the control of motor drives for engines and rolling mills and for high-power DC transmissions, large-sized silicon crystals having an extremely tight phosphorus background doping corresponding to about 40 Ω cm or higher are required. The exact level of the phosphorus concentration and its homogeneous distribution are decisively responsible for the electrical quality of the thyristor: the breakdown behaviour and blocking voltage depend upon the maximum of the doping concentration, while the minimum of the doping concentration is responsible for the quality of the hightemperature behaviour of the device. Optimal properties can be expected if the distribution of the dopant is exactly homogeneous and no difference between the maximum and the minimum of the dopant concentration exists.


Electrical Resistivity Silicon Crystal Stable Sulphur Isotope Crystal Defect Doping Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Burtscher: Resistivity fluctuations, growth striations and swirls in silicon single crystals. Proceedings of the European Summer School, July 8–12, 1974, Bad Boll, ed. by H. Weiss (1974) pp. 63–91Google Scholar
  2. 2.
    E. Spenke, W. Heywang: Phys. Stat. Sol. (a) 64 (11), 12 (1981)Google Scholar
  3. 3.
    M. Schnöller, E. Spenke: Physik in unserer Zeit 7 (1), 1 (1976)CrossRefGoogle Scholar
  4. 4.
    P. Voss: IEEE Trans. Electron. Devices ED-20, 299 (1973)CrossRefGoogle Scholar
  5. 5.
    A.F. Witt, H.C. Gatos: J. Electrochem. Soc. 115, 70 (1968)CrossRefGoogle Scholar
  6. 6.
    D.T.J. Hurrle, E. Jakeman, E.R. Pike: J. Cryst. Growth 3/4, 633 (1968)CrossRefGoogle Scholar
  7. 7.
    K. Morizane, A.F. Witt, H.C. Gatos: J. Electrochem. Soc. 114, 738 (1976)CrossRefGoogle Scholar
  8. 8.
    M. Schnöller: Nuclear transmutation doping. In: Landolt-Börnstein,New Series Vol. 17, Semiconductors,Subvolume c, ed. by M Schulz, H Weiss (Springer, Berlin, Heidelberg 1984) Sect., pp. 185–191 and 513–516Google Scholar
  9. 9.
    K. Lark-Horovitz: Nucleon-bombarded semiconductors. In: Semiconducting Materials, Proceedings of a Conference at Univiversity of Reading ( Butterworth, London 1951 ) pp. 47–69Google Scholar
  10. 10.
    M. Tanenbaum, A.D. Mills: J.Electrochem. Soc. 108, 171 (1961)CrossRefGoogle Scholar
  11. 11.
    E. Haas, J.A. Martin: Nuclear transmutation doping from the viewpoint of radioactivity. In: Neutron Transmutation Doping in Semiconductors, ed. by J.M. Meese ( Plenum Press, New York and London 1979 ) pp. 27–36CrossRefGoogle Scholar
  12. 12.
    E.W. Haas, M.S. Schnöller: J. Electron. Mater. 5, 57–68 (1976)CrossRefGoogle Scholar
  13. 13.
    P. Voss: private communication (1976)Google Scholar
  14. 14.
    J. Corish, F. Benière, V.K. Agrawal, S. Harridos, C. Defeux: J. Appl. Phys. 50, 6338 (1979)CrossRefGoogle Scholar
  15. 15.
    C. Jagannath, Z.W. Grabowsky, A.K. Ramdas: Phys. Rev. B 23, 2082 (1981)CrossRefGoogle Scholar
  16. 16.
    A. Yusa, D. Itoh, C. Kim, H. Kim, K. Hushimi, S. Ohkawa: Application of NTD silicon for radiation of surface barrier type. In: Neutron Transmutation-Doped Silicon. Proceedings of the Third International Conference on Neutron Tansmututation Doping of Silicon, Aug. 27–29, 1980, Copenhagen, ed. by J. Guldberg (Plenum Press, New York 1980 ) pp. 473–485Google Scholar
  17. 17.
    W.V. Ammon: Neutronen in der Silizium-Haibleitertechnik, Neue Forschungsneutronenquelle G arching ( Technische Universität München, Garching 1998 ) pp. 78–80Google Scholar
  18. 18.
    J. Krauße: National Bureau of Standards Special Publication 400–10, Spreading Resistance Symposium, Proceedings of a Symposium held at NBS, Gaithersburg, MD, June 13–14 (1974)Google Scholar
  19. 19.
    J.C. Irvin: Bell Syst. Tech. J. 41, 387 (1962)Google Scholar
  20. 20.
    M. Schnöller: IEEE Trans. Electron Devices 21, 313 (1973)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • M. Schnöller

There are no affiliations available

Personalised recommendations