Skip to main content

Defects, Diffusion, Ion Implantation, Recrystallization, and Dielectrics

  • Chapter
Silicon
  • 1020 Accesses

Abstract

Ideally pure single-crystal silicon shows an intrinsic electrical conductivity, which is low at room temperature and rises with increasing temperature. To produce devices, well-defined parts of the silicon specimen, usually in the form of a wafer, must exhibit a well-defined surplus of either negative (electrons) or positive (holes) carriers, leading to n-type conductivity or p-type conductivity, respectively. n-type conductivity is obtained by doping with donors such as P, As, and Sb, and p-type conductivity is obtained with acceptors such as B, Al, Ga, and In. Donor or acceptor atoms must be on substitutional sites in the single-crystal silicon lattice to be electrically active, i.e. to form levels close to the conduction band or close to the valence band, respectively. The particular cases of N in Si and C are discussed in the context of ion implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.R. Huff, H. Tsuya, U. Gösele (eds.): Semiconductor Silicon 1998, Proceedings, Vol. 98–1 ( Electrochemical Society, Pennington, NJ 1998 )

    Google Scholar 

  2. J. Bardeen, C. Herring: Diffusion in alloys and the Kirkendall effect. In: W. Shockley, J.H. Hollomon, R.J. Maurer, F. Seitz: Imperfections in Nearly Perfect Crystals (Wiley, New York 1952) pp. 261–288; C. Zener: ibid., pp. 289–314

    Google Scholar 

  3. J. Crank: The Mathematics of Diffusion, 2nd edn ( Clarendon Press, Oxford 1985 ) pp. 212–214

    Google Scholar 

  4. J. Crank: The Mathematics of Diffusion, 2nd edn ( Clarendon Press, Oxford 1985 )

    Google Scholar 

  5. S. Glasstone, K.J. Laidler, H. Eyring: The Theory of Rate Processes ( McGraw-Hill, New York 1941 )

    Google Scholar 

  6. M. Lannoo, J. Bourgion: Point Defects in Semiconductors I, Springer Series in Solid-State Sciences 22 ( Springer, Berlin, Heidelberg, New York 1981 )

    Google Scholar 

  7. J. Bourgoin, M. Lannoo: Point Defects in Semiconductors II, Springer Series in Solid-State Sciences 35 ( Springer, Berlin, Heidelberg, New York 1983 )

    Google Scholar 

  8. A. Seeger, K.P. Chik: Diffusion mechanisms and point defects in silicon and germanium., Phys. Stat. Sol. 29, 455 (1968)

    Article  CAS  Google Scholar 

  9. M. Werner, H. Mehrer, H.D. Hochheimer: Effects of hydrostatic pressure, temperature, and doping on self-diffusion in germanium. Phys. Rev. B 32, 3930 (1985)

    Article  CAS  Google Scholar 

  10. H. Föll, B.O. Kolbesen: Formation and nature of swirl defects in silicon. Appl. Phys. 8, 319 (1975)

    Article  Google Scholar 

  11. S.M. Hu: Defects in silicon substrates. J. Vac. Sci. Technol. 14, 17 (1977)

    Article  CAS  Google Scholar 

  12. see e.g. in ref [7] chapter 9, pp. 247–270

    Google Scholar 

  13. D. Widmann, H. Mader, H. Friedrich: Technology of Integrated Circuits, Springer Series in Advanced Microelectronics Vol. 2 ( Springer, Berlin, Heidelberg, New York 2000 )

    Google Scholar 

  14. H.A. Jahn, E. Teller: Stability of polyatomic molecules in degenerate electronic states. Proc. Roy. Soc. A 161, 220 (1937)

    Article  CAS  Google Scholar 

  15. H. Bross: private communication (2003)

    Google Scholar 

  16. J.B. Mitchell, J. Shewchun, D.A. Thompson: Nitrogen-implanted silicon. II. Electrical properties. J. Appl. Phys. 46, 335 (1975)

    Article  CAS  Google Scholar 

  17. P.V. Pavlov, E.I. Zorin, D.I. Tetelbaum, A.F. Khokhlov: Nitrogen as dopant in silicon and germanium. Phys. Stat. Sol. (a) 35, 11 (1976)

    Article  CAS  Google Scholar 

  18. K.L. Brower: Jahn—Teller-distorted nitrogen donor in laser-annealed silicon. Phys. Rev. Lett. 44, 1627 (1980)

    Article  CAS  Google Scholar 

  19. J. Robertson: Theory of defects in amorphous semiconductors. J. Non-Cryst. Solids 77–78, 37 (1985)

    Article  Google Scholar 

  20. N.N. Gerasimenko, V.F. Stas’: Buried insulator layer formation by N+ implantation. Nucl. Instrum. Methods Phys. Res. B 65, 73 (1992)

    Article  Google Scholar 

  21. A.Y. Liu, M.L. Cohen: Structural properties and electronic structure of low-compressibility materials: /3-Si3N4 and hypothetical 0-C3N4. Phys. Rev. B 41, 10727 (1990)

    Article  CAS  Google Scholar 

  22. F. Link: Untersuchungen zur Phasenbildung mittels Ionenimplantation im SiC-N System. PhD Thesis, J.W. Goethe Universität, Frankfurt am Main (1999)

    Google Scholar 

  23. J.A. Borders, W. Beezold: Infrared studies of SiC, Si3N4, and SiO2 formation in ion-implanted silicon. In: Proc. Second Intern. Conf. on Ion Implantation in Semiconductors, ed. by I. Ruge, J. Graul, Garmisch-Partenkirchen, Germany ( Springer, Berlin, Heidelberg, New York 1971 ) pp. 241–247

    Chapter  Google Scholar 

  24. A.M. Markwitz: Ionenstrahlsynthese und Analyse von oberflächennahen und vergrabenen Siliziumnitridschichten. Ph.D. Thesis, J.W. Goethe University, Frankfurt (1994)

    Google Scholar 

  25. E.F. Krimmel: Silicon nitride: electronic structure; electrical, magnetic, and optical properties; spectra; analysis. In: Gmelin Handbook of Inorganic and Organometallic Chemistry, Si, Silicon, Supplement Vol. B 5b2, 8th edn ( Springer, Heidelberg 1997 ) pp. 1–171

    Google Scholar 

  26. E.F. Krimmel: Silicon nitride in microelectronics and solar cells. In: Gmelin Handbook of Inorganic and Organometallic Chemitry, Si, Silicon, Supplement Vol. B 5c, 8th edn ( Springer, Heidelberg 1991 ) pp. 1–320

    Google Scholar 

  27. R. Hezel: Silicon nitride in microelectronics and solar cells. In: Gmelin Handbook of Inorganic and Organometallic Chemistry, Si, Silicon, Supplement Vol. B 5c, 8th edn ( Springer, Heidelberg 1991 ) pp. 321–362

    Google Scholar 

  28. J. Lindhard, M. Scharff, H.E. Schiptt: Range concepts and heavy ion ranges. Mat. Fys. Medd. Dan. Vid. Selsk. 33, No. 14 (1963)

    Google Scholar 

  29. W.S. Johnson, J.F. Gibbons: Projected Range Statistics in Semiconductors (Stanford University Book Store, Stanford, CA 1969 )

    Google Scholar 

  30. J.F. Ziegler, J.P. Biersack, U. Littmark: The Stopping and Ranges of Ions in Solids ( Academic Press, New York 1983 )

    Google Scholar 

  31. H. Runge: Distribution of implanted ions under arbitrarily shaped mask edges. Phys. Stat. Sol. A 39, 595 (1977)

    Article  CAS  Google Scholar 

  32. A.W. Tinsley, W.A. Grant, G. Carter, M.J. Nobes: The retention of bi ions implanted in GaAs. In: Proc. Second International Conference on Ion Implantation in Semiconductors, ed. by I. Ruge, J. Graul, Garmisch-Partenkirchen ( Springer, Berlin, Heidelberg 1971 ) pp. 199–204

    Chapter  Google Scholar 

  33. E.F. Krimmel, H. Pfleiderer: Implantation profiles modified by sputtering. Radiation Effects 19, 83 (1973)

    Article  CAS  Google Scholar 

  34. K.S. Jones, S. Prussin, E.R. Weber: A systematic analysis of defects in ion-implanted silicon. Appl. Phys. A 45, 1 (1988)

    Article  Google Scholar 

  35. P.J. Caplan, E.H. Poindexter, B.E. Deal, R.R. Pazouk: ESR centers, interface states, and oxide fixed charge in thermally oxidized silicon wafers. J. Appl. Phys. 50, 5847 (1979)

    Article  CAS  Google Scholar 

  36. E.H. Poindexter, G.J. Gerardi, M.E. Rueck, P.J. Caplan, N.M. Johnson, D.K. Biegelsen: Electronic traps Pb centers at the Si/SiO2 interface: Band-gap energy distribution. J. Appl. Phys. 56, 2844 (1984)

    Article  CAS  Google Scholar 

  37. H. Boroffka, E.F. Krimmel, M. Lindner, H. Runge: The origin of leakage current of laser and electron beam annealed diodes. In: Proc. Laser and Electron Beam Processing of Electronic Materials, Proceeding Volume 80–1 ( Electrochemical Society, Pennington, NJ 1980 ) pp. 178–186

    Google Scholar 

  38. N.M. Johnson, D.K. Biegelsen, M.D. Moyer: Low-temperature annealing and hydrogenation of defects at the Si—SiO2 interface. J. Vac. Sci. Technol. 19, 390 (1981)

    Article  CAS  Google Scholar 

  39. E.F. Krimmel. Silicon nitride: electronic structure; electrical, magnetic, and optical properties; spectra; analysis. In: Gmelin Handbook of Inorganic and Organometallic Chemistry, Si, Silicon, Supplement Vol. B 5b2, 8th edn (Springer, Heidelberg 1997), pp. 25–52, 164–170

    Google Scholar 

  40. Proc. First Intern. Conf. on Ion Implantation in Semiconductors, Thousand Oaks, USA (1970); Proc. Second Intern. Conf. on Ion Implantation in Semiconductors,Garmisch Partenkirchen, Germany (Springer, Heidelberg 1971); European Conf. on Ion Implantation (Peter Pelegrinus, Reading 1970)

    Google Scholar 

  41. H. Müller, H. Ryssel, I. Ruge: A new method for boron doping of silicon by implantation of BF2-molecules. In: Proc. Second Intern. Conf. on Ion Implantation in Semiconductors, ed. by I. Ruge, J. Graul, Garmisch-Partenkirchen, Germany ( Springer, Berlin, Heidelberg 1971 ) pp. 85–95

    Chapter  Google Scholar 

  42. H. Boroffka, E.F. Krimmel, H. Mader, H. Runge: Laser annealing of semiconductor devices. In: Proceedings of Laser Effects in Ion Implanted Semiconductors (Catania 1978 ) pp. 224–231

    Google Scholar 

  43. E.F. Krimmel: Slip line free silicon in large-area multiple-scan annealing with a line-focused electron beam. Phys. Stat. Sol. (a) 70, K63 (1982); E.F. Krimmel: Elektroneninterferenzen in der Umgebung der Brennlinie einer magnetischen Quadrupollinse. Z. Phys. 163, 339 (1961)

    CAS  Google Scholar 

  44. E.F. Krimmel, H. Oppolzer, H. Runge, W. Wondrak: Kinetics of scanned electron beam annealing of high-energy as ion implanted silicon. Phys. Stat. Sol. (a) 66, 565 (1981)

    Article  CAS  Google Scholar 

  45. E.F. Krimmel: Research on future microcircuit technology. Trans. South African Inst. Elec. Eng. 74, 128 (1983)

    Google Scholar 

  46. E.F. Krimmel: Verfahren zur Oberflächenvergrößerung eines Substrates. Offenlegungsschrift DE 33 10 331 Al (1984)

    Google Scholar 

  47. A. Markwitz, H. Baumann, E.F. Krimmel: Height control of silicon nano whiskers embedded in ultra thin silicon nitride layers by rapid thermal annealing. Physica E 11, 110 (2001)

    Article  CAS  Google Scholar 

  48. H. Boroffka: privat communication

    Google Scholar 

  49. D. Bäuerle: Laser Processing and Chemistry, 3rd edn ( Springer, Heidelberg 2000 )

    Google Scholar 

  50. M. Winstel, E.F. Krimmel, A. Weiss: Excimer laser-induced deposition of silicon using SiHC13 precursor. Siemens Forsch.- u. Entwickl.-Ber. 17, 6 (1988)

    CAS  Google Scholar 

  51. G. Dearnaley, J.H. Freeman, R.S. Nelson, J. Stephen: Ion Implantation ( North Holland, Amsterdam 1973 )

    Google Scholar 

  52. H. Ryssel, I. Ruge: Zonenimplantation ( Teubner, Stuttgart 1978 )

    Book  Google Scholar 

  53. S.M. Sze: Physics of Semiconductor Devices ( Wiley, New York 1981 )

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Krimmel, E.F. (2004). Defects, Diffusion, Ion Implantation, Recrystallization, and Dielectrics. In: Siffert, P., Krimmel, E.F. (eds) Silicon. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09897-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09897-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07356-4

  • Online ISBN: 978-3-662-09897-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics