Lattice Dynamics of Defects and Thermal Properties of 3C-SiC

  • D. N. Talwar
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 73)


Using a realistic theoretical scheme, a comprehensive study of the lattice dynamics of defects in 3C-SiC and of the thermal properties of that material is presented. For the perfect compound, the data on lattice constants, elastic constants, and high-symmetry phonon modes have allowed us to optimize the parameters of the lattice-dynamical model to obtain accurate values of the phonon dispersions, the one-phonon density of states, the mode Grüneisen parameters % MathType!Translator!2!1!AMS LaTeX.tdl!AMSLaTeX! % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB % PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY-Hhbbf9v8qqaqFr0x % c9pk0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8fr % Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaiiaacq % WFZoWzdaqadaqaamaaFiaabaGaamyCaaGaay51GaaacaGLOaGaayzk % aaaaaa!3D88! \[\gamma \left( {\overrightarrow q } \right)\]% MathType!End!2!1!, the specific heat C v (T), and the thermal expansion coefficient α(T) within the quasi-harmonic approximation. Despite a small softening of the TA modes in 3C-SiC, the variation of α(T) with temperature is seen to be much like that of C v (T), and unlike silicon and most other tetrahedrally coordinated materials, it exhibits no negative values at lower temperatures. The lattice-dynamical behavior of isolated and complex defect centers in 3C-SiC is studied in the framework of a Green’s function technique. Theoretical results obtained for the characteristic vibrational modes of some prototypical centers are analyzed, compared, and discussed in relation to experimental results and first-principles calculations.


Lattice Dynamics Deep Level Transient Spectroscopy Phonon Dispersion Impurity Mode Substitutional Defect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Process Technology for Silicon Carbide Devices” edited by C.-M. Zetterling, IEE Publishing, London, 2003.Google Scholar
  2. 2.
    S.I. Vlaskina, ‘Silicon carbide LED’, Semiconductor Physics, Quantum Electronics & Optoelectronics. 5, 71, 2002.Google Scholar
  3. 3.
    Silicon Carbide: A Review of Fundamental Questions and Applications to Current Device Technology”, edited by W.J. Choyke, Hiroyuki, Matsunami, and G. Pensi, Akademie Verlag GmbH, Berlin, 1997; ‘Properties of Silicon Carbide’, edited by G.L. Harris, IEE Publishing, London, 1995.Google Scholar
  4. 4.
    Point Defects in Semiconductors I — Theoretical Aspects” by M. Lanoo and J. Bourgoin, Springer-Verlag, Berlin, Heidelberg, New York, 1981.Google Scholar
  5. 5.
    Silicon Carbide and Related Materials’ Proceedings of the Sixth International Conference, Kyoto, Japan, 18-21 September 1995 edited by S. Nakashima, H. Matsunami, S. Yoshida, H. Harima, Institute of Physics Conf. Series 142, 1996.Google Scholar
  6. 6.
    P.G. Neudeck, ‘Progress towards high temperature, high power SiC devices’, Institute of Physics Conf. Series 141, 1994.Google Scholar
  7. 7.
    S. Onda, R. Kumar, and K. Hara, ‘SiC Integrated MOSFETs’in Ref. [2] pp. 369-388.Google Scholar
  8. 8.
    M. Bhatnagar and B.J. Baliga, IEEE Trans. Electron Devices 40, 645 (1993).CrossRefGoogle Scholar
  9. 9.
    B.J. Baliga, Proc. IEEE 82, 1112 (1994).CrossRefGoogle Scholar
  10. 10.
    H. Morkoç, S. Strite, G.B. Gao, M.E. Lin, B. Sverdlov, and M. Burns, J. Appl. Phys. 76, 1363 (1994).CrossRefGoogle Scholar
  11. 11.
    J.T. Torvic, M. Leksono, J.I. Pankove, B.V. Zeghbroeck, H.M. Ng and T.D. Moustakas, “Electrical characterization of GaN/SiC n-p heterojunction diodes” Appl. Phys. Lett. 72, 1371 (1998).CrossRefGoogle Scholar
  12. 12.
    Properties of Advanced Semiconductor Materials-GaN, AIN, InN, BN, SiC, SiGe’, edited by M.E. Levinshtein, S.L. Rumyantsev and M.S. Shur, John Wiley (Europe), 2001.Google Scholar
  13. 13.
    A.P. Verma and P. Krishna, “Polymorphism and Polytypism in Crystals”, Wiley: New York, 1966; P. Krishna, “Crystal Growth and Characterization of Polytype structures”, Pergamon Press, Oxford 1983.Google Scholar
  14. 14.
    R.S. Ramsdell, Am. Mineral (USA) 32, 64 (1947).Google Scholar
  15. 15.
    H. Jagodzinski, Acta Crystallogr. (Denmark) 2, 201 (1949).CrossRefGoogle Scholar
  16. 16.
    G.R. Zhadanov, C. R. Acad. Sci. (France) 48, 39 (1945).Google Scholar
  17. 17.
    W.R.L. Lambrecht, S. Limpijumnong, S.N. Rashkeev, and B. Segall “Band structure interpretation of the optical transitions between low-lying conduction bands in n-type doped SiC polytypes”, in Proceeding of the 7th International Conference on Silicon Carbide, III-Nitrides and Related Materials, edited by G. Pensi, H. Morkoc, B. Monemar, and E. Janzen, (Trans Tech Publication, Stockholm, 1997), pp.271-274. W.R.L. Lambrecht, S. Limpijumnong, S.N. Rashkeev, and B. Segall, “Electronic band structure of SiC polytypes: a discussion of theory and experiment”, Phys. Stat. Sol. (b) 202, 5 (1997); S. Limpijumnong and W.R.L. Lambrecht, “Total energy differences between SiC polytypes revisited”, Phys. Rev. B 57, 12017 (1998); S. Limpijumnong, W.R.L. Lambrecht, S.N. Rashkeev, and B. Segall, “Theory of the optical absorption bands in the 1-3 eV range in n-type Silicon Carbide polytypes”, Phys. Rev. B 59, 012890 (1999).Google Scholar
  18. 18.
    F. Bechstedt, P. Käckell, A. Zywietz, K. Karch, B. Adolph, K. Tenelsen, and J. Furthmüller, “Polytypism and properties of silicon carbide”, Phys. Stat. Sol. (b) 202, 35 (1997).CrossRefGoogle Scholar
  19. 19.
    Z. Jiang, X. Xu, H. Wu, F. Zhang, and Z. Jin, “Ab initio calculation of SiC polytypes”, Solid State Commun. 123, 263 (2002).CrossRefGoogle Scholar
  20. 20.
    W.R.L. Lambrecht, S. Limpijumnong, and B. Segall, “Theory of Below Gap Absorption Bands in n-Type SiC Polytypes; Or, How SiC Got Its Colors”, in Silicon Carbide and Related Materials-1999, ed. by C.H. Carter, Jr., R.P. Devaty, and G.S. Rohrer, Mater. Sci. Forum 338-342, 545 (2000).Google Scholar
  21. 21.
    C. Cheng, K. Kunc, and V. Heine, Phys. Rev. B 39, 5892 (1989).CrossRefGoogle Scholar
  22. 22.
    M. Hofmann, A. Zywietz, K. Karch, and F. Bechstedt, “Lattice dynamics of SiC polytypes within the bond-charge model”, Phys. Rev. B 50, 13401-11, (1994); K. Karch, P. Pavone, W. Windl, O. Schutt, and D. Strauch, “Ab initio calculation of structural and lattice dynamical properties of silicon carbide”, Phys. Rev. B50, 17054 (1994).Google Scholar
  23. 23.
    W. Windl, K. Karch, P. Pavone, O. Schutt, D. Strauch, W.H. Weber, K.C. Hass, and L. Rimai, “Second-order Raman spectra of SiC: experimental and theoretical results from ab initio calculations”, Phys. Rev. B 49, 8764 (1994).CrossRefGoogle Scholar
  24. 24.
    K. Karch, P. Pavone, W. Windl, D. Strauch, and F. Bechstedt, “Ab-initio calculation of structural, lattice-dynamical, and thermal properties of cubic silicon carbide”, Int. J. Quantum Chem. 56, 801 (1995).CrossRefGoogle Scholar
  25. 25.
    K. Karch, G. Wellenhofer, P. Pavone, U. Rössler, and D. Strauch, “Structural and electronic properties of SiC polytypes”, in The Physics of Semiconductors, edited by D. J. Lockwood, World Scientific: Singapore, 401 - 404 (1995).Google Scholar
  26. 26.
    W.J. Choyke and L. Patrick, Phys. Rev. 127, 1868 (1962); W. J. Choyke, D.R. Hamilton, and L. Patrick, Phys. Rev. 133, A1163 (1964); D.W. Feldman, J.H. Parker, Jr., W.J. Choyke, and L. Patrick, Phys. Rev. 173, 787 (1968).Google Scholar
  27. 27.
    J.P. Bergman, O. Kordina, and E. Janzen, “Time resolved spectroscopy of defects in SiC”, Phys. Stat. Sol. (a) 162, 65 (1997).CrossRefGoogle Scholar
  28. 28.
    S. Greulich-Weber, “EPR and ENDOR investigations of shallow impurities in SiC polytypes”, Phys. Stat. Sol. (a) 162, 95 (1997).CrossRefGoogle Scholar
  29. 29.
    J. Baur, M. Kunzer, and J. Schneider, “Transition metals in SiC polytypes as studied by magnetic resonance techniques”, Phys. Stat. Sol. (a) 162, 153 (1997).CrossRefGoogle Scholar
  30. 30.
    T. Dalibor, G. Pensi, H. Matsunami, T. Kimoto, W.J. Choyke, A. Schöner, and N. Nordell, “Deep defect centers in silicon carbide monitored by deep level transient spectroscopy”, Phys. Stat. Sol. (a) 162, 199 (1997).CrossRefGoogle Scholar
  31. 31.
    H. Itoh, A. Kawasuso, T. Oshima, M. Yoshikawa, I. Nashiyama, S. Tanigawa, S. Misawa, H. Okumura, and S. Yoshida, “Intrinsic defects in cubic silicon carbide”, Phys. Stat. Sol. (a) 162, 173 (1997).CrossRefGoogle Scholar
  32. 32.
    X.D. Chen, C.C. Ling, S. Fung, C.D. Beling, M. Gong, T. Henkel, H. Tanoue, and N. Kobayashi, “Beryllium implantation induced deep level defects in p-type 6H silicon carbide”, J. Appl. Phys. 93, 3117 (2003); C.C. Ling, C.D. Beling, and S. Fung, “Isochronal annealing studies of n-type 6H-SiC with the use of positron lifetime spectroscopy”, Phys. Rev. B 62, 8016 (2000).Google Scholar
  33. 33.
    S.Yu. Davydov, A.A. Lebedev, O.V. Posrednik, Yu.M. Tairov, “Role of silicon vacancies in formation of Schottky barriers at Ag and Au contacts to 3C- and 6H-SiC”, Semiconductors 36, 652 - 654 (2002).CrossRefGoogle Scholar
  34. 34.
    V.V. Zelenin, D.V. Davydov, M.L. Korogodskii, and A.A. Lebedev, “The effect of hydrogen etching on the electrical properties of autoepitaxial silicon carbide layers”, Tech. Phys. Lett. 28, 382-384 (2002); D.V. Davydov, A.A. Lebedev, V.V. Kozlovski, N.S. Savkina, and A.M. Strel’chuk”DLTS study of defects in 6H- and 4H-SiC created by proton irradiation”, Physica B 308-310, 641 - 644 (2002).Google Scholar
  35. 35.
    F. Gao, E. Bylaska, W. Weber, and L. Corrales, “Native defect properties in beta-SiC: ab initio pseudopotential and empirical potential calculations”, Nucl. Instrum. Methods B 180, 286 (2001); F. Gao, E. Bylaska, W. Weber, and L. Corrales, “Ab initio and empirical potential studies of defect properties in 3C-SiC”, Phys. Rev. B 64, 245208 (2001).Google Scholar
  36. 36.
    A. Gali, P. Deák, E. Rauls, N.T. Son, I.G. Ivanov, F.H.C. Carlsson, E. Janzén, and W.J. Choyke, “The correlation between the anti-site pair and the DI center in SiC”, Phys. Rev. B 67, 155203/1-5 (2003); P. Deák, A. Gali, and B. Aradi, “Hydrogen in SiC” in “Recent advances in SiC Research”, eds. W.J. Choyke, H. Matsunami, and G. Pensl, Springer: Berlin 2003; A. Gali, D. Heringer, P. De0ák, Z. Hajnal, Th. Frauenheim, R.P. Devaty, and W.J. Choyke, “Isolated oxygen defects in 3C- and 4H-SiC: a theoretical study”, Phys. Rev. B 66, 125208-1, (2002); A. Gali, B. Aradi, D. Heringer, W.J. Choyke, R.P. Devaty, and S. Bai, Appl. Phys. Lett. 80, 237 (2002); B. Aradi, A. Gali, P. Deák, J.E. Lowther, N.T. Son, E. Janzén, and W.J. Choyke, Phys. Rev. B 63, 245202 (2001); A. Gali, B. Aradi, P. Deák, W.J. Choyke, and N.T. Son, Phys. Rev. Lett. 84, 4926 (2000); N.T. Son, W.M. Chen, J.L. Lindström, B. Monemar, and E. Janzén, Mater. Sci. Eng. B 61/62, 202 (1999).Google Scholar
  37. 37.
    T.T. Petrenko, T.L. Petrenko, and V.Ya. Bratus, “The carbon (100) split interstitial in SiC” J. Phys. Cond. Matter 14, 12433 (2002).CrossRefGoogle Scholar
  38. 38.
    F.R. Chien, S.R. Nutt, J.M. Carulli Jr., N. Buchan, C.P. Beetz Jr., and W.S. Yan, “Heteroepitaxial growth of /3-SiC films on TiC substrates: interface structure and defects”, J. Mat. Res. 9, 2086 (1996).CrossRefGoogle Scholar
  39. 39.
    M.I. Chaudhry and Robert L. Wright, “Epitaxial growth of β-SiC on Si by low temperature chemical vapor deposition, J. Mat. Res. 5, 1595 (1996).CrossRefGoogle Scholar
  40. 40.
    K.C. Kim, H.W. Shim, E. Suh, H.J. Lee, and K.S. Nahm, “Growth of high quality 3C-SiC on a Si(111) substrate by chemical vapor deposition”, J. Korean Phys. Soc. 32, 588 (1998).Google Scholar
  41. 41.
    Y. Irokawa, N. Yamada, M. Kodama, and T. Kachi. Kachi, “Growth of 3C-SiC layers on silicon substrates with a novel stress relaxation”, MRS Proc. Vol. 680 E, edited by T.E. Kazior, P. Parikh, C. Nguyen, E.T. Yu, 2001.Google Scholar
  42. 42.
    W. Bahng and H.J. Kim, “Heteroepitaxial growth of β-SiC thin films on Si(100) substrate using bis-trimethylsilylmethane”, Appl. Phys. Lett. 69, 4053 (1996).CrossRefGoogle Scholar
  43. 43.
    T. Hatayama, T. Fuyuki, and H. Matsunami, “Gas source molecular beam epitaxial growth of 3C-SiC on Si with heterointerface modification by a Si-CGe ternary system”, Mater. Sci. Forum 264-268, 235 (1998).CrossRefGoogle Scholar
  44. 44.
    S. Nakashima and H. Harima, “Raman investigations of SiC polytypes”, Phys. Stat. Sol. (a) 162, 39 (1997) and references there in.Google Scholar
  45. 45.
    B. Herzog, S. Rohmfeld, R. Päsche, M. Hundhausen, L. Ley, K. Semmelroth, and G. Pensl, “Experimental determination of the phonon-eigenvectors of silicon carbide by rman spectroscopy”, Mater. Sci. Forum 389-393, 625 (2002).CrossRefGoogle Scholar
  46. 46.
    S. Rohmfeld, M. Hundhausen, L. Ley, C.A. Zorman, and M. Mehregany, “Quantitative evaluation of biaxial strain in epitaxial 3C-SiC layers on Si(100) substrates by Raman spectroscopy”, J. Appl. Phys. 91, 1113 (2002).CrossRefGoogle Scholar
  47. 47.
    N. Sieber, T. Stark, Th. Seyller, L. Ley, C.A. Zorman, and M. Mehregany, “The origin of the split Si-H stretch mode on hydrogenated 6H-SiC(0001): Titration of crystal truncation”, Appl. Phys. Lett. 80, 4726 (2002).CrossRefGoogle Scholar
  48. 48.
    M. Cardona (Ed.) Light Scattering in Solids I, Springer Verlag, Berlin/Heidelberg/New York 1983.Google Scholar
  49. 49.
    R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon enhanced light-matter interaction at the nanometer scale”, Nature 418, 159 (2002).CrossRefGoogle Scholar
  50. 50.
    C. Ulrich, A. Debernardi, E. Anastassakis, K. Syassen, and M. Cardona, “Raman linewidths of phonons in Si, Ge and SiC under pressure”, Phys. Stat. Sol. (b) 211, 293 (1999).CrossRefGoogle Scholar
  51. 51.
    A.R. Goni, and K. Syassen “Optical properties of semiconductors under pressure (review)” in Semiconductors and Semimetals Vol. 54, ed. by T. Suski and W. Paul ( Academic, New York 1998 ), 247.Google Scholar
  52. 52.
    A. Debernardi, C. Ulrich, K. Syassen, and M. Cardona “Raman linewidths of optical phonons in 3C-SiC under pressure: first-principles calculations and experimental results” Phys. Rev. B 59, 6774 (1999).CrossRefGoogle Scholar
  53. 53.
    A Jayaraman, “Diamond anvil cell and high-pressure physical investigations”, Rev. Mod. Phys. 55, 65 (1983); B.A. Weinstein and R. Zallen, in Light Scattering in Solids, edited by M. Cardona and G. Güntherodt, Springer-Berlin, 1984.Google Scholar
  54. 54.
    D. Olego and M. Cardona, Phys. Rev. B 25, 1151 (1982); D. Olego, M. Cardona, and P. Vogl, Phys. Rev. B 25, 3878 (1982); F. Widulle, T. Ruf, O. Bu-resch, A. Debernardi, and M. Cardona, Phys. Rev. Lett. 82, 3089 (1999).Google Scholar
  55. 55.
    J. Liu and Y.K. Vohra, Phys. Rev. Lett. 72, 4105 (1994).CrossRefGoogle Scholar
  56. 56.
    C.C. Chiu, S.B. Desu, and Z.J. Chen, “Local equilibrium phase diagrams: SiC deposition in a hot wall LPCVD reactor”, J. Mater. Res. 9, 2066 (1996).CrossRefGoogle Scholar
  57. 57.
    L.J. Porter, J. Li, and S. Yip, “Atomistic modeling of finite temperature properties of crystalline 0-SiC: lattice vibrations, heat capacities and thermal expansion”, J. Nucl. Mater. 246, 53 (1997).CrossRefGoogle Scholar
  58. 58.
    K. Karch, P. Pavone, A.P. Mayer, F. Bechstedt, and D. Strauch, “First-principles study of thermal properties of 3C-SiC”, Physica B 219 & 220, 448 (1996).Google Scholar
  59. 59.
    Z. Li and R.C. Bradt, “Thermal Expansion and Elastic Anisotropies of SiC as Related to Polytype Structure”, Silicon Carbide Symposium 1987.Google Scholar
  60. 60.
    W. Li and T. Wang, “Elasticity, stability, and ideal strength of β-SiC in planewave-based ab initio calculations”, Phys. Rev. B 59, 3993 (1999).CrossRefGoogle Scholar
  61. 61.
    K. Strössner, M. Cardona, and W.J. Choyke, “High pressure X-ray investigations on 3C-SiC”, Solid State Commun. 63, 113 (1987); M. Yoshida, A. Onodera, M. Ueno, K. Takemura, and O. Shimomura, Phys. Rev. B 48, 10587 (1993).CrossRefGoogle Scholar
  62. 62.
    Numerical Data and Functional Relationships in Science and Technology, edited by O. Madelung, Landolt-Bornstein, New Series Group III, Vol. 17, Pt. a ( Springer, Berlin, 1982 ), 49.Google Scholar
  63. 63.
    R.D. Carnahan, J. Am. Ceram. Soc. 51, 223 (1968).CrossRefGoogle Scholar
  64. 64.
    See Appendix II of Silicon Carbide 1973 (Edited by R.C. Marshall, J.W. Faust, and C.E. Ryan) ( University of South Carolina Press, City 1974 ).Google Scholar
  65. 65.
    A.R. Göni, H. Siegle, K. Syassen, C. Thomsen, and J.-M. Wagner, Phys. Rev. B64, 035205-1 (2001).Google Scholar
  66. 66.
    J. Serrano, J. Strempfer, M. Cardona, M. Schwoerer-Böhning, H. Reqardt, M. Lorenzen, B. Stojetz, P. Pavone, and W.J. Choyke, “Determination of the phonon dispersion of zinc-blende (3C) silicon carbide by inelastic X-ray scattering”, Appl. Phys. Lett. 80, 4360 (2002).CrossRefGoogle Scholar
  67. 67.
    N.M. Stanton, A.J. Kent, and D. Lehmann, “Phonon transport in 6H-SiC”, Semicon. Sci. Technol. 18 L4 - L7 (2003).CrossRefGoogle Scholar
  68. 68.
    J.S. Shah and M.E. Straumanis, Solid State Commun. 10, 159 (1972); G.K. White, J. Phys. D 6, 2070 (1973).CrossRefGoogle Scholar
  69. 69.
    S.I. Novakova, Sov. Phys. Solid State 2, 1464 (1961).Google Scholar
  70. 70.
    G.A. Slack and S.F. Bartram, J. Appl. Phys. 46, 89 (1975).CrossRefGoogle Scholar
  71. 71.
    D.N. Talwar, “Site selectivity of defects in III-V compounds by local mode spectroscopy and model calculations”, edited by Di Bartolo and Chen, World Scientific 2001, p. 487.Google Scholar
  72. 72.
    A.M. Stoneham, “Theory of Defects in Solids”, Clarendon, Oxford 1975; M. Jaros, Adv. Phys. 29, 409 (1980).Google Scholar
  73. W.G. Spitzer, “Festkörperprobleme XP”, edited by O Madelung, Pergamon, New York 1971, pp. 1-44; A.A. Maradudin, E.W. Montroll, C.H. Weiss, and I.P. Ipatova, in “Solid State Physics”, 2nd Edition, edited by F. Seitz, D. Turnbull, and H. Ehrenreich, Academic, New York 1971.Google Scholar
  74. 74.
    W.A. Harrison, “Electronic Structure and the Properties of Solids”, Freeman, San Francisco, 1980; An-Ban Chen and Arden Sher, “Semiconductor Alloys — Physics and Material Properties”, Plenum, New York, 1995; D. N. Talwar, K.S. Suh, and C.S. Ting, Philos. Mag. B 54, 93 (1986).Google Scholar
  75. 75.
    K. Kunc, Ann. Phys. (Paris) 8, 319 (1973-74); K. Kunc, M. Balkanski, and M.A. Nusimovici, Phys. Rev. B 12, 4346 (1975); Phys. Stat. Solidi B 71, 341 (1975).Google Scholar
  76. 76.
    H. Bilz and W. Kress, “Phonon Dispersion Relations in Insulators”, Springer Series in Solid State Sciences, Vol$110 (Springer Berlin 1979); O.H. Nielsen and W. Weber, Comput. Phys. Comm. 18, 101 (1979); J. Phys. C 13, 2449 (1980).Google Scholar
  77. 77.
    D.N. Talwar, M. Vandevyver, K.K. Bajaj, and W.M. Theis, “Gallium-isotope fine structure of impurity modes due to defect complexes in Gaas”, Phys. Rev. B 33, 8525 (1986).Google Scholar
  78. 78.
    D.N. Talwar, “Pressure dependent phonon properties of cubic group III nitrides”, in the Preceedings of Tenth International Conference on High Pressure Semiconductor Physics (HPSP-X), Guildford 2002, edited by B. Murdin, Phys. Stat. Solidi b 235, 254 (2003).Google Scholar
  79. 79.
    D.N. Talwar, M. Vandevyver, and K.K. Bajaj, “Theory of impurity vibrations due to isolated interstitials and interstitial-substitutional pair defects in semiconductors”, Phys. Rev. B36, 1715 (1987).CrossRefGoogle Scholar
  80. 80.
    A. Grimm, A.A. Maradudin, I.P. Ipatova, and A.V. Subashiev, J. Phys. Chem. Solids 33, 775 (1972).CrossRefGoogle Scholar
  81. 81.
    D.N. Talwar and M. Vandevyver, “Pressure-dependent phonon properties of III-V compound semiconductors”, Phys. Rev. B 41, 12129 (1990).CrossRefGoogle Scholar
  82. 82.
    F.D. Murnaghan, Proc. Nat. Acad. Sci. (USA) 30, 244 (1944).CrossRefGoogle Scholar
  83. 83.
    T.H.K. Barron, J.G. Collins, and G.K. White, Adv. Phys. 29, 609 (1980).CrossRefGoogle Scholar
  84. 84.
    Throughout this paper we have adopted the common, but not universal, terminology of describing a mode with a frequency above the host lattice cut-off as a localized vibrational mode (LVM) and a mode with a frequency lying between the bands in the phonon spectrum of the host crystal as a gap mode. The term localized mode is taken to mean either type of mode.Google Scholar
  85. 85.
    B. Segall, S.A. Alterovitz, E.J. Haugland, and L.G. Matus, J. Appl. Phys. 74, 584 (1986).Google Scholar
  86. 86.
    W.J. Moore, J. Appl. Phys. 74, 1805 (1993); W.J. Moore, J.A. Freitas, Yu.M. Altaiskii, V.L. Zuev, and L.M. Ivanova, “Donor excitation spectra in 3C-SiC”, Inst. Phys. Conf. Ser. No. 137, edited by M.G. Spencer, R.P. Devaty, J.A. Edmond, M. Asif Khan, R. Kaplan, and M. Rahman 1994, p. 181.Google Scholar
  87. 87.
    W.E. Carlos, “Impurities and structural defects in SiC determined by ESR” in Properties of Silicon Carbide, edited by G.L. Harris, IEE, INSPEC No. 13, 42 (1995).Google Scholar
  88. 88.
    A.I. Veinger, A.G. Zabrodskii, G.A. Lomakina, and E.N. Mokhov, Fiz. Tverd. Tela 28, 1659 (1986) (Soy. Phys. Solid State 28, 917 (1986)).Google Scholar
  89. 89.
    S. Greulich-Weber, M. Feege, J.-M. Speath, E.N. Kalabukhova, S.N. Lukhin, and E.N. Mokhov, Solid State Commun. 93, 393 (1995).CrossRefGoogle Scholar
  90. 90.
    T. Troffer, C. Peppermüller, G. Pensl, K. Rottner, and A. Schöner, J. Appl. Phys. 80, 3739 (1996).CrossRefGoogle Scholar
  91. 91.
    M.M. Anikin, A A Lebedev, A.L. Syrkin, and A.V. Suvorov, Sov. Phys. Semicond. 19, 69 (1985).Google Scholar
  92. 92.
    W. Suttrop, G. Pensl, and P. Lanig, Appl. Phys. A 51, 231 (1990).CrossRefGoogle Scholar
  93. 93.
    V.S. Ballandovich and E.N. Mokhov, Semiconductors 29, 187 (1995).Google Scholar
  94. 94.
    P.G. Baranov and E.N. Mokhov, Semicon. Sci. Technol. 11, 489 (1996).CrossRefGoogle Scholar
  95. 95.
    A. Duijn-Arnold, T. Ikoma, O.G. Poluektov, P.G. Baranov, E.N. Mokhov, and J. Schmidt, Phys. Rev. B 57, 1607 (1998).CrossRefGoogle Scholar
  96. 96.
    H. Kuwabara and S. Yamada, Phys. Stat. Solidi A 30, 739 (1975).Google Scholar
  97. 97.
    M. Laube, G. Pensl, and H. Itoh, “Suppressed diffusion of implanted boron in 4H—SiC”, Appl. Phys. Lett. 74, 2292 (1999).CrossRefGoogle Scholar
  98. 98.
    H. Bracht, N.A. Stolwijk, M. Laube, and G. Pensl, “Diffusion of boron in silicon carbide: evidence for the kick-out mechanism”, Appl. Phys. Lett. 77, 3188 (2000).CrossRefGoogle Scholar
  99. 99.
    Hydrogen in Semiconductors”, Semiconductors and Semimetals, edited by J.I. Pankove and N.M. Johnson Vol. 34 ( Academic Press, New York, 1991 ).Google Scholar
  100. 100.
    D.J. Larkin, Phys. Stat. Solidi B 202, 305 (1997).CrossRefGoogle Scholar
  101. 101.
    G.J. Gerardi, E.H. Pointdexter, and D.J. Keeble, Appl. Spectrosc. 50, 1428 (1996).CrossRefGoogle Scholar
  102. 102.
    M.S. Janson, A. Hallèn, M.K. Linnarson, and B.G. Svensson, Mater. Sci. Forum 353, 427 (2001).CrossRefGoogle Scholar
  103. 103.
    N. Achtziger, J. Grillenberger, W. Witthuhn, M.K. Linnarsson, M. Janson, and B.G. Svensson, Appl. Phys. Lett. 73, 945 (1998).CrossRefGoogle Scholar
  104. 104.
    W.J. Choyke and L. Patrick, Phys. Rev. B 4, 1843 (1971); W.J. Choyke, in “The Physics and Chemistry of Carbides, Nitrides and Borides”, NATO ASI Series, Vol. 185, edited by R. Freer (Kluwer Academic, Dordrecht, 1990), p. 563; J. Schneider and K. Maier, Physica B185, 199 (1993).Google Scholar
  105. 105.
    K. Nishino, T. Kimoto, and H. Matsunami, Jpn. J. Appl. Phys. 34, L1110 (1995).CrossRefGoogle Scholar
  106. 106.
    A. Fissel, W. Richter, J. Furthmüller, and F. Bechstedt, Appl. Phys. Lett. 78, 2512 (2001).CrossRefGoogle Scholar
  107. 107.
    L.A. Rahn, P.J. Colwell, and W.J. Choyke, Bull. Am. Phys. Soc. 21, 408 (1976).Google Scholar
  108. 108.
    L. Patrick and W.J. Choyke, J. Phys. Chem. Solids 34, 565 (1973).CrossRefGoogle Scholar
  109. 109.
    G.A. Evans, J.W. Steeds, L. Ley, M. Hundhausen, N. Schulze, and G. Pensl, Phys. Rev. B 66, 035204 (2002).Google Scholar
  110. 110.
    A. Mattausch, M. Bockstedte, and O Pankratov, Mater. Sci. Forum 389-393, 481 (2002).CrossRefGoogle Scholar
  111. 111.
    A. Gali, N.T. Son, P. Deâk, and E. Janzén, Mater. Sci. Forum 389-393, 477 (2002).CrossRefGoogle Scholar
  112. 112.
    B.R. Davidson, R.C. Newman, T.J. Bullough, and T.B. Joyce, Phys. Rev. B 48, 17106 (1993).CrossRefGoogle Scholar
  113. 113.
    W.J. Choyke and L. Patrick, Phys. Rev. Lett. 29, 355 (1972); Phys. Rev. B 9, 3214 (1974).CrossRefGoogle Scholar
  114. 114.
    W.J. Choyke, R.P. Devaty, S. Bai, A. Gali, P. Deák, and G. Pensl, Mater. Sci. Forum 389, 585 (2001).CrossRefGoogle Scholar
  115. 115.
    B. Clerjaud, F. Gendron, C. Porte, W. Wilkening, Solid State Commun. 93, 463 (1995).CrossRefGoogle Scholar
  116. 116.
    P. Deák, A. Gali, and B. Aradi (private communication)Google Scholar
  117. 117.
    P. Pavone, K. Karch, O. Schütt, W. Windl, D. Strauch, P. Giannozzi, and S. Baroni, Phys. Rev. B 48, 3156 (1993).CrossRefGoogle Scholar
  118. 118.
    W. Weber, Phys. Rev. Lett. 33, 371 (1974).CrossRefGoogle Scholar
  119. 119.
    B.A. Weinstein, Solid State Commun. 24, 595 (1977).CrossRefGoogle Scholar
  120. 120.
    S. Limpijumnong and W.R.L. Lambrecht, Phys. Rev. Lett. 86, 91 (2001); Phys. Rev. B 63, 104103 (2001).Google Scholar
  121. 121.
    D.N. Talwar, Appl. Phys. Lett. 80, 1553 (2002).Google Scholar
  122. 122.
    L. Torpo, S. Pöykkö, and T.P. Nieminen, Phys. Rev. B 57, 6243 (1998).CrossRefGoogle Scholar
  123. 123.
    P.J. Colwell and M.V. Klein, Phys. Rev. B 6, 498 (1972).CrossRefGoogle Scholar
  124. 124.
    R. Helbig, C. Haberstroh, and T. Lauterbach, Extended Abstract # 477, Electrochemical Society Fall 1989 Meeting, Hollywood, Florida.Google Scholar
  125. 125.
    G. Katulka, C. Guedj, J. Kolodzey, R.G. Wilson, C. Swann, M.W. Tsao, and J. Rabolt, “Electrical and optical properties of Ge-implanted 4H-SiC”, Appl. Phys. Lett. 74, 540 (1999); C. Guedz and J. Kolodzey, “Substitutional Ge in 3C-SiC”, App. Phys. Lett. 74, 691 (1999).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • D. N. Talwar

There are no affiliations available

Personalised recommendations