Advertisement

Fundamental Properties of SiC: Crystal Structure, Bonding Energy, Band Structure, and Lattice Vibrations

  • J. Dong
  • A.-B. Chen
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 73)

Abstract

As a result of intensive research in the past decade, SiC has matured as a semiconductor for electronic-device applications. The knowledge of the fundamental materials properties for SiC is also as mature as that for other semiconductors. This is particularly true for the three most common polytypes 3C, 4H, and 6H. This chapter attempts to summarize the current status of the crystal structure, bonding energy, band structure, and lattice vibrations for the four polytypes 3C, 2H, 4H, and 6H of SiC. We evaluate these properties with our theoretical tools and make an effort to compare different polytypes. We then conclude by separating the well-established results from those that remain uncertain. Such an emphasis not only provides an updated source for these fundamental properties but may also encourage further refinement of these results.

Keywords

Local Density Approximation Phonon Dispersion Conduction Band Minimum Local Density Approximation Calculation Hexagonal Polytype 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fundamental Questions and Applications of SiC (Part I),ed. W.J. Choyke, H. Matsunami, and G. Pensl, Phys. Stat. Sol. (b) 202, 1–642 (1997).Google Scholar
  2. 2.
    Fundamental Questions and Applications of SiC (Part II),ed. W.J. Choyke, H. Matsunami, and G. Pensi, Phys. Stat. Sol. (a) 162, 1–512 (1997).Google Scholar
  3. 3.
    C. Cheng, V. Heine, and I.L. Jones, “Silicon carbide polytypes as equilibrium structures”, J. Phys.: Conden. Matt. 2, 5097–5113 (1990).CrossRefGoogle Scholar
  4. 4.
    C.H. Park, B.—H. Cheong, K.—H. Lee, and K.J. Chang, “Structural and electronic properties of cubic, 2H, 4H, and 6H SiC”, Phys. Rev. B 49” 4485–4493 (1994).Google Scholar
  5. 5.
    P. Kackel, B. Wenzien, and F. Bechstedt, “Influence of atomic relaxations on the structural properties of SiC polytypes from ab initio calculations”, Phys. Rev. B 50, 17037–17046 (1994).Google Scholar
  6. 6.
    S. Limpijumnong, W.R.L. Lambrecht, S.N. Rashkeev, and B. Segall, “Electronic band structure of SiC polytypes. A discussion of theory and experiment”, Phys. Stat. Sol. (b) 202, 5–33 (1997).Google Scholar
  7. 7.
    F. Bechstedt, P. Kackell, A. Zywietz, K. Karch, B. Adolph, K. Tenelsen, and J. Furthmuller, “Polytypism and Properties of Silicon Carbide”, Phys. Stat. Sol. (b) 202, 35–62 (1997).Google Scholar
  8. 8.
    S. Limpijumnong and W.R.L. Lambrecht, “Total energy differences between SiC polytypes revisited”, Phys. Rev. B 57, 12017–12022 (1998).Google Scholar
  9. 9.
    G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals”, Phys. Rev. B 47, 558–561 (1993).Google Scholar
  10. 10.
    G. Kresse, J. Furthmuller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set”, Comput. Mater. Science 6, 15–50 (1996).CrossRefGoogle Scholar
  11. 11.
    D. Vanderbilt, “Soft self-consistent pseudopotentials in a generalized eigenvalue formalism”, Phys. Rev. B 41, 7892–7895 (1990).Google Scholar
  12. 12.
    K. Laasonen, R. Car, C. Lee, and D. Vanderbilt, “Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics”, Phys. Rev. B 43, 6796–6799 (1991).Google Scholar
  13. 13.
    G. Kresse and J. Hafner, “Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements”, J. Phys.: Condensed Matter 6, 8245–8257 (1994).CrossRefGoogle Scholar
  14. 14.
    J. Dong, O.F. Sankey, and G. Kern, “Theoretical study of the vibrational modes and their pressure dependence in the pure clathrate-II silicon framework”, Phys. Rev. B 60, 950–958 (1999); J. Dong, J.K. Tomfohr, and O.F. Sankey, “Rigid intertetrahedron angular interaction of nonmolecular carbon dioxide solids”, Phys. Rev. B 61, 5967–5971 (2000); J. Dong, O.F. Sankey, S.K. Deb, G. Wolf, and P.F. McMillan, “Theoretical study of ß-Ge3N4 and its high-pressure spinel 7-phase”, Phys. Rev. B 61, 11979–11992 (2000).Google Scholar
  15. 15.
    B. Dorner, H. Schober, A. Wonhas, M. Schmitt, and D. Strauch, “The phonon dispersion in 6H-SiC investigated by inelastic neutron scattering”, Eur. Phys. J. B 5, 839–846 (1998).Google Scholar
  16. 16.
    J. Serrano, J. Strempfer, M. Cardona, M. Schwoerer-Bohning, H. Requardt, M. Lorenzen, B. Stojetz, P. Pavone, and W.J. Choyke, “Determination of the phonon dispersion of zinc blende (3C) silicon carbide by inelastic X-ray scaterring”, Appl. Phys. Lett. 80, 4360–4362 (2002).CrossRefGoogle Scholar
  17. 17.
    J. Serrano, J. Strempfer, M. Cardona, M. Schwoerer-Bohning, H. Requardt, M. Lorenzen, B. Stojetz, P. Pavone, and W.J. Choyke, “Lattice dynamics of 4H-SiC by inelastic X-ray scattering”, Mater. Sci. Forum 433–436, 257–260 (2003).CrossRefGoogle Scholar
  18. 18.
    K. Karch, P. Pavone, W. Windl, O. Schutt, and D. Strauch, “Ab initio calculation of structural and lattice-dynamical properties of silicon carbide”, Phys. Rev. B 50, 17054–17063 (1994).Google Scholar
  19. 19.
    G. Wellenhofer, K. Karch, P. Pavone, U. Rossler, and D. Strauch, “Ionicity of SiC polytypes”, in Proc. Silicon Carbide and Related Materials 1995 Conf., Inst. Phys. Conf. Ser. 142, Chap. 2, 301 (1996).Google Scholar
  20. 20.
    K. Karch and F. Bechstedt, Phys. Rev. Lett. 77, 1660 (1996).CrossRefGoogle Scholar
  21. 21.
    N.W. Jepps and T.F. Page, “Polytypic transformations in silicon carbide”, in Progress in Crystal Growth and Characterization (Cryst. Growth Charact. Polytype Struct.) 7, 259–307, 1983 ).Google Scholar
  22. 22.
    A.R. Verma and P. Krishina, Polymorphism and Polytypism in Crystals, Wiley, New York (1966).Google Scholar
  23. 23.
    C. Kittel, Introduction to Solid State Physics, 7 th Edition,John Wiley < Sons, New York (1996), P18, Fig. 21.Google Scholar
  24. 24.
    O. Madelung (ed.), Semiconductors - basic data, Springer, Berlin (1996).Google Scholar
  25. 25.
    A.H. Gomes de Mesquita, “Refinement of the crystal structure of SiC type 6H”, Acta. Cryst. 23, 610–617 (1967).CrossRefGoogle Scholar
  26. 26.
    N.W. Thibault, “Morphological and strucrural crystallography and optical properties of Silicon Carbide”, Z. fuer Krist. 63, 1–18 (1926).Google Scholar
  27. 27.
    R.F. Adamsky and K.M. Merz, “Synthesis and crystallography of the wurtzite form of silicon carbide”, Z. fuer Krist. 111, 350–361 (1959).CrossRefGoogle Scholar
  28. 28.
    See Table 7–3 and footnotes by W.A. Harrison in Electronic Structure and Properties of Solids, Dover Pub., Inc, New York (1989), p. 176.Google Scholar
  29. 29.
    M. Hofmann, A. Zywietz, K. Karch, and F. Bechstedt, “Lattice dynamics of SiC polytypes within the bond-charge model”, Phys. Rev. B 50, 13401–13411 (1994).Google Scholar
  30. 30.
    P. Krishna, R.C. Marshall, and C.E. Ryan, “Discovery of a 2H–3C solid state transformation in silicon carbide single crystals”, J. Cryst. Growth 8, 129–131 (1971)CrossRefGoogle Scholar
  31. 31.
    P. Krishna and R.C. Marshall, “Direct transformation from the 2H to the 6H structure in single-crystal silicon carbide”, J. Cryst. Growth 11, 147–150 (1971).CrossRefGoogle Scholar
  32. 32.
    R.G. Humphreys, D. Bimberg, and W.J. Choyke, “Wavelength modulated absorption in silicon carbide”, Solid State Commun. 39, 163–167 (1981).CrossRefGoogle Scholar
  33. 33.
    L. Patrick, D.R. Hamilton, and W.J. Choyke, “Growth, luminescence, selection rules, and lattice sums of SiC with wurtzite structure”, Phys. Rev. 143, 526–536 (1966).CrossRefGoogle Scholar
  34. 34.
    W.J. Choyke, D.R. Hamilton, and L. Patrick, “Optical properties of cubic SiC: luminescence of nitrogen-exciton complexes, and interband absorption”, Phys. Rev. 133, A1163 - A1166 (1964).CrossRefGoogle Scholar
  35. 35.
    J. Lüning, S. Eisbitt, J.-E. Rubensson, C. Allmers, and W. Eberhardt, “Electronic structure of silicon carbide polytypes studied by soft X-ray spectroscopy”, Phys. Rev. B 59, 10573–10582 (1999).CrossRefGoogle Scholar
  36. 36.
    C. Persson and U. Lindefelt, “Detailed band structure for 3C-, 2H-, 4H-, 6HSiC, and Si around the fundamental band gap”, Phys. Rev. B 54, 10257–10260 (1996).CrossRefGoogle Scholar
  37. 37.
    C. Persson and U. Lindefelt, “Dependence of energy gaps and effective masses on atomic positions in hexagonal SiC”, J. Appl. Phys. 86, 5036 (1999).CrossRefGoogle Scholar
  38. 38.
    B. Wenzien, P. Käckell, and F. Bescstedt, “Quasiparticle band structure of silicon carbide polytypes”, Phys. Rev. B 52, 10897–10905 (1995).Google Scholar
  39. 39.
    B. Kaczer, H.-J. Im, J.P. Pelz, J. Chen, and W.J. Choyke, “Direct observation of conduction-band structure of 4H- and 6H-SiC using ballistic electron emission microscopy”, Phys. Rev. B 57, 4027–4032 (1998).CrossRefGoogle Scholar
  40. 40.
    I. Shalish, L.B. Altfeder, and V. Narayanamurti, “Observations of conduction-band structure of 4H- and 6H-SiC”, Phys. Rev. B 65, 073104 (2002).Google Scholar
  41. 41.
    A.-B. Chen and P. Srichaikul, “Shallow Donor Levels and the Conduction Band Edge Structures in Polytypes of SiC”, Phys. Stat. Solidi (b) 202, 81–106 (1997).CrossRefGoogle Scholar
  42. 42.
    J. Kono, S. Takeyama, H. Yokoi, N. Miura, M. Yamanaka, M. Shinohara, and K. Ikoma, “High-field cyclotron resonance and impurity transition in n-type and p-type 3C-SiC at magnetic fields up to 175 T”, Phys. Rev. B 48, 10909–10916 (1993).Google Scholar
  43. 43.
    W.M. Chen, N.T. Son, E. Janzén, D.M. Hofmann, and B.K. Meyer, “Effective masses in SiC determined by cyclotron resonance experiments”, Phys. Stat. Solidi (a) 162, 79–93 (1997).CrossRefGoogle Scholar
  44. 44.
    D. Volm, B.K. Meyer, D.M. Hofmann, W.M. Chen, N.T. Son, C. Persson, U. Lindefelt, O. Kordina, E. Sörman, A.O. Konstantinov, B. Monemar, and E. Janzén, “Determination of the electron effective-mass tensor in 4H SiC”, Phys. Rev. B 53, 15409–15412 (1996).CrossRefGoogle Scholar
  45. 45.
    B.K. Meyer, D.M. Hofmann, D. Volm, W.M. Chen, N.T. Son, and E. Janzén, “Optically detected cyclotron resonance investigations on 4H and 6H SiC: Band-structure and transport properties”, Phys. Rev. B 61, 4844–4849 (2000).CrossRefGoogle Scholar
  46. 46.
    N.T. Son, O. Kordina, A.O. Konstantinov, W.M. Chen, E. Soerman, B. Monemar, and E. Janzen, “Electron effective masses and mobilities in high-purity 6HSiC chemical vapor deposition layers”, Appl. Phys. Lett. 65, 3209–3211 (1994).CrossRefGoogle Scholar
  47. 47.
    G. Wellenhofer and U. Rössler, “Global band structure and near-band-edge states”, Phys. Stat. Solidi (b) 202, 107–123 (1997).CrossRefGoogle Scholar
  48. 48.
    V. Fiorentini, “Semiconductor band structures at zero pressure”, Phys. Rev. B 46, 2086–2091 (1992).CrossRefGoogle Scholar
  49. 49.
    C. Persson, U. Lindefelt, and B.E. Sernelius, “Doping-induced effects on the band structure in n-type 3C-, 2H-, 4H-, 6H-SiC, and Si”, Phys. Rev. B 60, 16479–16493 (1999).Google Scholar
  50. 50.
    F. Engelbrecht, J. Zeman, G. Wellenhofer, C. Peppermuller, R. Helbig, M. Martinez, and U. Rossler, “Hydrostatic-pressure coefficient of the indirect gap and fine structure of the valence band of 6H-SiC”, Phys. Rev. B 56, 7348–7355 (1997).CrossRefGoogle Scholar
  51. 51.
    M. Willatzen, M. Cardona, and N.E. Christensen, “Relativistic electronic structure, effective masses, and inversion-asymmetry effects of cubic silicon carbide (3C-SiC)”, Phys. Rev. B 51, 13150 (1995).CrossRefGoogle Scholar
  52. 52.
    P. Giannozzi, S. de Gironcoli, P. Pavone, and S. Baroni, “Ab initio calculation of phonon dispersions in semiconductors”, Phys. Rev. B 43, 7231–7242 (1991).CrossRefGoogle Scholar
  53. 53.
    J. Ihm, M.T. Yin, and M.L. Cohen, “Quantum mechanical force calculations in solids: The phonon spectrum of Si”, Solid State Commun. 37, 491–494 (1981).CrossRefGoogle Scholar
  54. 54.
    K. Kunc and R.M. Martin, “Ab initio force constants of GaAs: a new approach to calculation of phonons and dielectric properties”, Phys. Rev. Lett. 48, 406109 (1982).Google Scholar
  55. 55.
    D.W. Feldman, J.H. Parker, W.J. Choyke, and L. Patrick, “Raman scattering in 6H SiC”, Phys. Rev. 170, 698–704 (1968).CrossRefGoogle Scholar
  56. 56.
    D.W. Feldman, J.H. Parker, W.J. Choyke, and L. Patrick, “Phonon dispersion curves by raman scattering in SiC, polytypes 3C, 4H, 6H, 15R, and 21R”, Phys. Rev. 173, 787–793 (1968).CrossRefGoogle Scholar
  57. 57.
    C.C. Tin, R. Hu, J. Liu, Y. Vohra, and Z.C. Feng, “Raman microprobe spectroscopy of low-pressure — grown 4H-SiC epilayers”, J. Cryst. Growth 158, 509513 (1996).Google Scholar
  58. 58.
    S. Nakashima and H. Harima, “Raman investigation of SiC polytypes”, Phys. Status Solidi (a) 162, 39–64 (1997).CrossRefGoogle Scholar
  59. 59.
    F. Widulle, T. Ruf, O. Buresch, A. Debernardi, and M. Cardona, “Raman study of isotope effects and phonon eigenvectors in SiC”, Phys. Rev. Lett. 82, 30893092 (1999).Google Scholar
  60. 60.
    L. Patrick, “Infrared absorption in SiC polytypes”, Phys. Rev. 167, 809–813 (1968).CrossRefGoogle Scholar
  61. 61.
    C.Q. Chen, R. Helbig, F. Engelbrecht, and J. Zeman, “Infrared absorption spectra of 4H silicon carbide”, Appl. Phys. A 72, 717–720 (2001).CrossRefGoogle Scholar
  62. 62.
    W.J. Choyke, R.P. Devaty, L.L. Clemen, M.F. MacMillan, M. Yoganathan, and G. Pensl, Inst. Phys. Conf. Ser. 142, 257 (1996).Google Scholar
  63. 63.
    I.G. Ivanov, U. Lindefelt, A. Henry, O. Kordina, C. Hallin, M. Aroyo, T. Egilsson, and E. Janzen, “Phonon replicas at the M point in 4H-SiC: A theoretical and experimental study”, Phys. Rev. B 58, 13634–13647 (1998).CrossRefGoogle Scholar
  64. 64.
    C.H. Hodges, “Theory of phonon dispersion curves in silicon carbide polytypes”, Phys. Rev. 187, 994–999 (1969).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • J. Dong
  • A.-B. Chen

There are no affiliations available

Personalised recommendations