Skip to main content

SiC Nuclear-Radiation Detectors

  • Chapter

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 73))

Abstract

The properties and perfection of SiC films are related to aspects of their application in various kinds of devices. In particular, interest in using SiC as a detection medium in the registration and spectrometry of nuclear radiation is reviving.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.V. Babcock, S.L. Ruby, F.D. Schupp, and K.H. Sun, Miniature Neutron Detectors, Westinghouse Electrical Corp. Materials Engineering Report No. 57116600-A (1957).

    Google Scholar 

  2. R.V. Babcock and H.C. Chang, “SiC neutron detectors for high-temperature operation”, Int. Atom. Energy Symp. Proc. 1, 613 (1963).

    Google Scholar 

  3. R.V. Babcock, Radiation Damage in SiC, Westinghouse Research and Development Center Document No. 64–8C2–432-P1 (1964).

    Google Scholar 

  4. V.A. Tikhomirova, O.P. Fedoseeva, and G.F. Kholuyanov, “Properties of ionizing-radiation counters made of SiC doped by diffusion of beryllium”, Sov. Phys. Semicond. 6, 957–959 (1972).

    CAS  Google Scholar 

  5. V.A. Tikhomirova, O.P. Fedoseeva, and G.F. Kholuyanov, “Detector characteristics of a SiC detector prepared by the diffusion of beryllium”, Atomnaya Energiya 34, No. 2, 122–124 (1973).

    CAS  Google Scholar 

  6. V.A. Tikhomirova, O.P. Fedoseeva, and V.V. Bolshakov, “SiC detectors as fission-fragment counters in reactors”, Izmeritelnaya Teknika 6, 67–68 (1973).

    Google Scholar 

  7. A.A. Lebedev, N.S. Savkina, A.M. Ivanov, N.B. Strokan, and D.V. Davidov, “Epitaxial 6H-SiC layers as detectors of nuclear particales”, Mater. Sci. Forum 338342, 1447–1450 (2000).

    Google Scholar 

  8. F. Nava, P. Vanni, C. Lanzieri, and C. Canali, “Epitaxial silicon carbide charge particle detectors”, Nucl. Instrum. Methods A 437, 354–358 (1999).

    Article  CAS  Google Scholar 

  9. A.A. Lebedev, N.S. Savkina, A.M. Ivanov, N.B. Strokan, and D.V. Davidov, “6H-SiC epilayers as nuclear particale detectors”, Semiconductors 34, 243–249 (2000).

    Article  CAS  Google Scholar 

  10. J.F. Ziegler (ed.), Ion Implantation Science and Technology, Academic Press, Orlando (1984).

    Google Scholar 

  11. R.A. Logan and A.G. Chynoweth, “Charge multiplication in GaP p-n-junction”

    Google Scholar 

  12. J. Appl. Phys. 33, 1649–1654 (1962).

    Google Scholar 

  13. V.V. Makarov, “Distribution of the electron-hole pair generation density under bombardment of SiC by electrons with energy 20 keV”, Sov. Phys. Semicond. 9, 1098–1101 (1975).

    CAS  Google Scholar 

  14. I.N. Il’yashenko and N.B. Strokan, “Carrier lifetime in a-particle tracks for diffusion-drift transport in Si”, Semiconductors 30, 167–170 (1996).

    Google Scholar 

  15. M. Rogalla, K. Runge, and A. Soldner-Rembold, “Particle detectors based on semi-insulating silicon carbide”, Nucl. Phys. B. 78, 516–520 (1999).

    Article  CAS  Google Scholar 

  16. N.B. Strokan, “Determination of the uniformity of the carrier lifetime in a material from the profile of the amplitude spectrum of an ion detector”, Techn. Phys. Lett. 24, 186–188 (1998).

    Article  CAS  Google Scholar 

  17. V.K. Eremin, S.G. Danengirh, N.B. Strokan, and N.I. Tisnek, “Influence of the space charge on the semiconductor detector characteristic”, Sov. Phys. Semicond. 8, 556–561 (1974).

    CAS  Google Scholar 

  18. F. Nava, P. Vanni, G. Verzellesi, A. Castaldini, A. Cavallini, L. Polenta, R. Nipoti, and C. Donolato, “Charged particle detection properties of epitaxial 4H-SiC schottky diodes”, Mater. Sci. Forum 353356, 757–762 (2001).

    Google Scholar 

  19. DESSIS-6.0 Reference Manual,ISE Integrated Systems Engineering AG, Zurich, (Switzerland).

    Google Scholar 

  20. T. Kimoto, S. Nakazawa, K. Fujihira, T. Hirao, S. Nakamura, Y. Chen, K. Hashimoto, and H. Matsunami, “Recent achievements and future challenges in SiC homoepitaxial growth”, Mater. Sci. Forum 389393, 165–170 (2002).

    Google Scholar 

  21. G. Bertuccio and R. Casigaghi, “Study of silicon carbide for X-ray detection and spectroscopy”, IEEE Trans. Nucl. Sci. 50, 175–185 (2003).

    Article  CAS  Google Scholar 

  22. CREE Research, Inc., Durham, NC 27713, USA.

    Google Scholar 

  23. M. Bruzzi, F. Nava, S. Russo, S. Sciortino, and P. Vanni, “Characterisation of SiC detectors response to electron and photon irradiation”, Diamond Relat. Mater. 10, 657–661 (2001).

    CAS  Google Scholar 

  24. P. Bergonzo, D. Tromson, C. Mer, B. Guizard, F. Foulon, and A. Brambilla, “Particle and radiation detectors based on diamond”, Phys. Stat. Sol. (a) 185, 167–181 (2001).

    Article  CAS  Google Scholar 

  25. M. Rogalla, K. Runge, and A. Soldner-Rembold, “Particle detectors based on semi-insulating SiC”, Nucl. Phys. B (Proc. Suppl.) 78, 516–520 (1999).

    Article  CAS  Google Scholar 

  26. R.R. Ferber and G.N. Hamilton, Silicon Carbide High Temperature Neutron Detectors for Reactor Instrumentation, Westinghouse Research and Development Center Document No. 65–1C2-RDFCT-P3 (1965).

    Google Scholar 

  27. A.R. Dulloo, F.H. Ruddy, and J.G. Seidel, Radiation Response Testing of SiC Semiconductor Neutron Detectors for Monitoring Thermal Neutron Flux, Westinghouse Science and Technology Report No. 97–9TK1-NUSIC-R1 (1997).

    Google Scholar 

  28. F.H. Ruddy, A.R. Dulloo, J.G. Seidel, S. Seshadri, and L.B. Rowland, “Development of a silicon carbide radiation detector”, IEEE Trans. Nucl. Sci. 45, 536–541 (1998).

    Article  CAS  Google Scholar 

  29. A.R. Dulloo, F.H. Ruddy, J.G. Seidel, C. Davison, T. Flinchbaugh, and T. Daubenspeck, “Simultaneous measurement of neutron and gamma-ray radiation levels from a TRIGA reactor core using silicon carbide semiconductor detector”, IEEE Trans. Nucl. Sci. 46, 275–279 (1999).

    Article  Google Scholar 

  30. S. Kanazava, M. Okada, T. Nozaki, K. Shin, S. Ishihara, and I. Kimura, “Radiation induced defects in p-type silicon carbide”, Mater. Sci. Forum 389393, 521–524 (2002).

    Google Scholar 

  31. S. Kanazava, M. Okada, J. Ishii, T. Nozaki, K. Shin, S. Ishihara, and I. Kimura, “Electrical properties in neutron-irradiated silicon carbide”, Mater. Sci. Forum 389393, 517–520 (2002).

    Google Scholar 

  32. K.K. Lee, T. Ohshima, and H. Itoh, “Radiation response of p-channel 6H-SiC MOSFETs fabricated using pyrogenic conditions”, Mater. Sci. Forum 389393, 1097–1100 (2002).

    Google Scholar 

  33. G. Lindstrom, M. Moll, and E. Fretwurst, “Radiation hardness of silicon detectors–a challenge from high-energy physics”, Nucl. Instrum. Methods A 426, 1–15 (1999).

    Article  CAS  Google Scholar 

  34. E. Verbitskaya, M. Abreu, V. Bartsch, W. Bell, P. Berglund, and J. Bol, “Optimization of electric field distribution by free carrier injection in silicon detectors operated at low temperatures”, IEEE Trans. Nucl. Sci. 49, 1–6 (2002).

    Article  Google Scholar 

  35. A.A. Lebedev, A.I. Veinger, D.V. Davydov, V.V. Kozlovskii, N.S. Savkina, and A.M. Strelchyk, “Doping of n-type 6H-SiC and 4H-SiC with defects created with a proton beam”, J. Appl. Phys. 88, 1 (2000).

    Article  Google Scholar 

  36. A.A. Lebedev, N.B. Strokan, A.M. Ivanov, D.V. Davydov, and V.V. Kozlovskii, “Thin heavily compensated 6H-SiC epilayers as nuclear particle detectors”, Mater. Sci. Forum 353356, 763–766 (2001).

    Google Scholar 

  37. M. Ivanov, N.B. Strokan, D.V. Davidov, N.S. Savkina, A.A. Lebedev, Yu.T. Mironov, G.A. Ryabov, and E.M. Ivanov, “Radiation hardness of SiC based ions detectors for influence of the relative protons”, Appl. Surf. Sci. 184, 431–436 (2001).

    Article  CAS  Google Scholar 

  38. N.S. Savkina, A.A. Lebedev, D.V. Davydov, A.M. Strel’chuk, A.S. Tregubova, C. Raynaud, J.-P. Chante, M.-L. Locatelli, D. Planson, J. Milan, P. Godignon, F.J. Campos, N. Mestres, J. Pascual, G. Brezeanu, and M. Badila, “Low-doped 6H-SiC n-type epilayers grown by sublimation epitaxy”, Mater. Sci. Eng. B 77, 50–54 (2000).

    Article  Google Scholar 

  39. M.M. Anikin, N.I. Kuznecov, A.A. Lebedev, N.S. Savkina, A.L. Sirkin, and V.E. Chelnokov, “Current deep level spectroscopy in 6H-SiC p-n-structure with pulling field”, Fiz. Tekh. Poluprovodn. 28, 456–460 (1994).

    Google Scholar 

  40. A.M. Ivanov, N.B. Strokan, D.V. Davidov, N.S. Savkina, A.A. Lebedev, Yu.T. Mironov, G.A. Ryabov, and E.M. Ivanov, “Radiation hardness of SiC ion detectors to affect relativistic protons”, Semiconductors 35, 481–484 (2001).

    Article  CAS  Google Scholar 

  41. V. Eremin, N. Strokan, E. Verbitskaya, and Z. Li, “The development of transient current and charge techniques for the measurement of effective imputity concentration in the space charge region of p—n-junction detectors”, Nucl. Instrum. Methods A 373, 388 (1996).

    Article  Google Scholar 

  42. N.B. Strokan, A.A. Lebedev, A.M. Ivanov, D.V. Davydov, and V.V. Kozlovskii, “Special features of alpha-particale detection with semi-insulating 6H-SiC films”, Semiconductors 34, 1386–1390 (2000).

    Article  CAS  Google Scholar 

  43. G. Violina, P. Shkreby, E. Kalinina, G. Kholujanov, V. Kossov, R. Yafaev, A. Hallen, and A. Konstantinov, “Silicon carbide detectors of high energy particles”, Third International Seminar on Silicon Carbide and Related Materials, May 24–26, Novgorod, Russia, p. 125 (2000).

    Google Scholar 

  44. S.M. Ryvkin, “Pulse formation mechanism in semiconductor crystalline counters”, J. Techn. Phys. 26, 2667–2683 (1956).

    Google Scholar 

  45. N.A. Vitovskiy, P.I. Maleev, and S.M. Ryvkin, “Mechanism of creation of pulses in crystal detectors under conditions of a through-conducting channel”, J. Techn. Phys. 28, 460–469 (1958)

    Google Scholar 

  46. S.M. Ryvkin, Photoelectric Effects in Semiconductors, Consultants Bureau, New York (1964).

    Google Scholar 

  47. A. Rose, Concepts in Photoconductivity and Applied Problems, Interscience Publishers, New York (1963).

    Google Scholar 

  48. A.A. Lebedev, N.B. Strokan, A.M. Ivanov, D.V. Davydov, N.S. Savkina, E.V. Bogdanova, A.N. Kuznetsov, and R. Yakimova, “Amplification of the signal in triode structures of ion detectors based on 6H-SiC epitaxial films”, Appl. Phys. Lett. 79, 4447–4449 (2001).

    Article  CAS  Google Scholar 

  49. N.B. Strokan, A.M. Ivanov, D.V. Davydov, N.S. Savkina, E.V. Bogdanova, A.N. Kuznetsov, and A.A. Lebedev, “Triode structure of ion detector based on 6H-SiC epitaxial films”, Appl. Surf. Sci. 184, 455–459 (2001).

    Article  CAS  Google Scholar 

  50. A.A. Grinberg, “Calculation of transient processes in semiconductor triodes”, Solid State Phys. 1, 31–43 (1959).

    Google Scholar 

  51. N.B. Strokan, A.M. Ivanov, M.E. Boiko, N.S. Savkina, A. M. Strel’chuk, A.A. Lebedev, and R. Yakimova, “Silicon carbide transistor structures asl detectors of weakly ionizing radiation”, Semiconductors 37, 65–69 (2003).

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Strokan, N.B., Ivanov, A.M., Lebedev, A.A. (2004). SiC Nuclear-Radiation Detectors. In: Feng, Z.C. (eds) SiC Power Materials. Springer Series in Materials Science, vol 73. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09877-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09877-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05845-5

  • Online ISBN: 978-3-662-09877-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics