Advertisement

Introduction

  • H. Grauert
  • Th. Peternell
  • R. Remmert
Part of the Encyclopaedia of Mathematical Sciences book series (EMS, volume 74)

Abstract

1. In the beginning Riemann created the surfaces. The periods of integrals of abelian differentials on a compact surface of genus g immediately attach a g-dimensional complex torus to X. If g ≥ 2, the moduli space of X depends on 3g — 3 complex parameters. Thus problems in one complex variable lead, from the very beginning, to studies in several complex variables. Complex tori and moduli spaces are complex manifolds, i.e. Hausdorff spaces with local complex coordinates z1,..., zn; holomorphic functions are, locally, those functions which are holomorphic in these coordinates.

Keywords

Modulus Space Complex Space Complex Manifold Cohomology Group Coherent Sheave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • H. Grauert
    • 1
  • Th. Peternell
    • 2
  • R. Remmert
    • 3
  1. 1.Mathematisches InstitutUniversität GöttingenGöttingenGermany
  2. 2.Mathematisches InstitutUniversität BayreuthBayreuthGermany
  3. 3.Mathematisches InstitutUniversität MünsterMünsterGermany

Personalised recommendations