Advertisement

Sepsis pp 401-413 | Cite as

Die Bedeutung der Opiatantagonisten bei der Behandlung des septischen Schocks

  • J. W. Holaday

Zusammenfassung

Die endogenen Opioide werden durch eine Gruppe von Peptidmolekülen repräsentiert, die sowohl in vitro als auch in vivo opiatähnliche Wirkungen hervorrufen. Im letzten Jahrzehnt hat die Erforschung der endogenen Opioide und deren Rezeptoren (zusammengefaßt als „endogene Opioidsysteme“ bezeichnet) eine Reihe wichtiger physiologischer, pharmakologischer und psychischer Funktionen erbracht, die von diesen beeinflußt werden. Von besonderer Bedeutung sind dabei Opiatantagonisten wie Naloxon, die sich als empfindliches Instrument beim Erarbeiten von Einblicken in die Wirkungsweise der endogenen Opioide erwiesen haben. Dieses Kapitel gibt einen Überblick über einige wichtige Ergebnisse, die darauf hindeuten, daß die endogenen Opioidsysteme in der Pathogenese des endotoxischen und septischen Schocks eine pathophysiologische Rolle spielen. Auch auf die klinische Bedeutung von Naloxon und anderen Opiatantagonisten soll eingegangen werden.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Adams HP Jr, Olinger CP, Barsan WG, et al. (1986) A dose-escalation study of large doses of naloxone for treatment of patients with acute cerebral ischemia. Stroke 17 (3): 404–409PubMedCrossRefGoogle Scholar
  2. 2.
    Amir S (1986) Endorphins contribute to the loss of glucose homeostasis in anaphylactic shock. In: Progress in opioid research: proceedings of the international narcotics research conference. NIDA Research Monograph Series 75: 539–542Google Scholar
  3. 3.
    Bernton EW, Long JB, Holaday JW (1985) Opioids and neuropeptides: mechanisms in circulatory shock. Federation Proc 44: 290–299Google Scholar
  4. 4.
    Bhargava HN, Das S (1986) Evidence for opiate action at the brain receptors for thyrotropin-releasing hormone. Brain Research 368: 262–267PubMedCrossRefGoogle Scholar
  5. 5.
    Bhargava HN, Yousif DJ, Matwyshyn GA (1983) Interactions of thyrotropin releasing hormone, its metabolites and analogues with endogenous and exogenous opiates. Gen Pharmac 14 (6): 565–570CrossRefGoogle Scholar
  6. 6.
    Brasch H (1986) Influence of the optical isomers (+)- and (—)-naloxone on beating frequency, contractile force and action potentials of guinea-pig isolated cardiac preparations. Br J Pharmac 88: 733–740CrossRefGoogle Scholar
  7. 7.
    Bryant HU, Bernton EW, Holaday JW (1987) Immunosuppressive effects of chronic morphine treatment in mice. Life Sciences 41: 1731–1738PubMedCrossRefGoogle Scholar
  8. 8.
    Butler PD, Bodnar RJ (1984) Potentiation of foot shock analgesia by thyrotropin releasing hormone. Peptides 5: 635–639PubMedCrossRefGoogle Scholar
  9. 9.
    Caffrey JL, Gaugl JF, Jones CE (1985) Local endogenous opiate activity in dog myocardium: receptor blockade with naloxone. Am J Physiol 248 (Heart Circ Physiol 17): H382 - H388PubMedGoogle Scholar
  10. 10.
    Caffrey JL, Wooldridge B, Gaugl JF (1985) The interaction of endogenous opiates with autonomic circulatory control in the dog. Circ Shock 17: 233–242PubMedGoogle Scholar
  11. 11.
    Caffrey JL, Wooldridge B, Gaugl JF (1986) Naloxone enhances myocardial responses to isoproterenol in dog isolated heart-lung. Am J Physiol 250 (Heart Circ Physiol 19): H749 - H754PubMedGoogle Scholar
  12. 12.
    Chernow B, Lake CR, Teich S, et al (1986) Hemorrhagic hypotension increases plasma beta-endorphin concentrations in the nonhuman primate. Critical Care Medicine 14 (5): 505–507PubMedCrossRefGoogle Scholar
  13. 13.
    Curtis MT, Lefer AM (1980) Protective actions of naloxonc in hemorrhagic shock. Am J Physiol 239: H416–421PubMedGoogle Scholar
  14. 14.
    D’Amato RJ, Holaday JW (1984) Multiple opiate receptors in endotoxic shock: evidence for S involvement and ji-6 interactions in vivo. Proc Natl Acad Sci 81: 2898–2901PubMedCrossRefGoogle Scholar
  15. 15.
    DeMaria A, Heffernan JJ, Grindlinger GA, et al. (1985) Naloxone versus placebo in treatment of septic shock. Lancet June 15: 1363–1365CrossRefGoogle Scholar
  16. 16.
    Eiden LE, Ruth JA (1982) Enkephaline modulate the responsiveness of rat atria in vitro to norepinephrine. Peptides 3 (3): 475–478PubMedCrossRefGoogle Scholar
  17. 17.
    Evans AGJ, Nasmyth PA, Steward HC (1952) The fall of blood pressure caused by intravenous morphine in the rat and cat. Br J Pharmacol 7: 542–552Google Scholar
  18. 18.
    Faden AI (1984) Opiate antagonists and thyrotropin-releasing hormone: potential role in the treatment of shock. JAMA 252 (9): 1177–1180PubMedCrossRefGoogle Scholar
  19. 19.
    Faden AI (1984) Opiate antagonists and thyrotropin-releasing hormone: potential role in the treatment of central nervous system injury. JAMA 252 (11): 1452–1454PubMedCrossRefGoogle Scholar
  20. 20.
    Faden AI, Holaday JW (1980) Naloxone treatment of endotoxin shock: stereospecificity of physiologic and pharmacologic effects in the rat. J Pharm Exp Ther 212: 441–447Google Scholar
  21. 21.
    Faden AI, Pilotte NS, Burt DR (1986) Experimental spinal cord injury: effects of trauma or ischemia on TRH and muscarinic receptors. Neurology 36: 723–726PubMedCrossRefGoogle Scholar
  22. 22.
    Feuerstein G, Chiueh CC, Kopin IJ (1981) Effects of naloxone on the cardiovascular and sympathetic response to hypovolemic hypotension in the rat. Eur J Pharmacol 75: 65–69PubMedCrossRefGoogle Scholar
  23. 23.
    Flamm ES, Young W, Collins WF, et al. (1985) A phase 1 trial of naloxone treatment in acute spinal cord injury. J Neurosurg 63: 390–397PubMedCrossRefGoogle Scholar
  24. 24.
    Giuffre KA, Udelsman R, Listwak S, Chrousos GP (1988) Effects of immune neutralization of corticotropin-releasing hormone, adrenocorticotropin, and ß-endorphin in the surgically stressed rat. Endocrinology 122 (1): 306–310PubMedCrossRefGoogle Scholar
  25. 25.
    Grevert P, Albert LH, Inturrisi CE, Goldstein A (1983) Effects of eight-hour naloxone infusions on human subjects. Biological Psychiatry 18 (12): 1375–1392PubMedGoogle Scholar
  26. 26.
    Groeger JS (1986) Opioid antagonists in circulatory shock. Critical Care Medicine 14 (2): 170–171PubMedCrossRefGoogle Scholar
  27. 27.
    Gurll NJ, Holaday JW, Reynolds DG et al. (1987) Thyrotropin releasing hormone: effects in monkeys and dogs subjected to experimental circulatory shock. Crit Care Med 15 (6): 574–581PubMedCrossRefGoogle Scholar
  28. 28.
    Hamilton AJ, Carr DB, LaRovere JM, et al. (1986) Endotoxic shock elicits greater endorphin secretion than hemorrhage. Circ Shock 19: 47–54PubMedGoogle Scholar
  29. 29.
    Higgins TL, Sivak ED, O’Neil DM et al. (1983) Reversal of hypotension by continuous naloxone infusion in a ventilator-dependent patient. Annals of Internal Medicine 98 (1): 47–48PubMedCrossRefGoogle Scholar
  30. 30.
    Hinshaw LB, Archer LT, Beller BK, Ishida K, Chang AC, Brackett DJ, Flourney DJ, Passey RB, Wilson MF, Long JB, Holaday JW (in press) Further evaluation of naloxone therapy for E. coli sepsis in the baboon. Archives of SurgeryGoogle Scholar
  31. 31.
    Hinshaw LB, Beller BK, Chang AC, et al. (1984) Evaluation of naloxone for therapy of Escherichia coli shock. Arch Surg 119: 1410–1418PubMedCrossRefGoogle Scholar
  32. 32.
    Holaday JW (1983) Cardiovascular effects of the endogenous opiate system. In: Annual Review of Pharmacology 23: 541–594Google Scholar
  33. 33.
    Holaday JW (1984) Neuropeptides in shock and trauma injury: sites and mechanisms of action. Neuroendocrine Perspectives 3: 161–199Google Scholar
  34. 34.
    Holaday JW (1985) Endogenous opioids and their receptors. In: Current concepts, Kalamazoo MI, Scope Publications, UpjohnGoogle Scholar
  35. 35.
    Holaday JW, Bernton EW (1984) Thyrotropin releasing hormone: a potent neuromodulator with therapeutic potential. Arch Int Medicine 144: 1138–1140CrossRefGoogle Scholar
  36. 36.
    Holaday JW, D’Amato RJ (1983) Multiple opioid receptors: evidence for p-6 site interactions in endotoxic shock. Life Sci 33: 703–706PubMedCrossRefGoogle Scholar
  37. 37.
    Holaday JW, D’Amato RJ, Faden AI (1981) Thyrotropin releasing hormone improves cardiovascular function in experimental endotoxic and hemorrhagic shock. Science 213: 216–218PubMedCrossRefGoogle Scholar
  38. 38.
    Holaday JW, Faden AI (1978) Naloxone reversal of endotoxin hypotension suggests role of endorphins in shock. Nature 275: 450–451PubMedCrossRefGoogle Scholar
  39. 39.
    Iloladay JW, Faden AI (1983) TRH: Autonomic effects upon cardiorespiratory function in endotoxic shock. Reg Peptides 7: 111–125Google Scholar
  40. 40.
    Holaday JW, Kenner JR, Clatt CE, et al (1984) Dynorphin: cardiovascular consequences of opioid receptor interactions in normal and endotoxemic rats. Proc West Pharmacol Soc 27: 429–433PubMedGoogle Scholar
  41. 41.
    Holaday JW, Long JB, Tortella FC (1985) Evidence for kappa, mu and delta opioid binding site interactions in vivo. Federation Proceedings 44: 2860–2862Google Scholar
  42. 42.
    Holaday JW, O’Hara M, Faden AI (1981) Hypophysectomy alters cardiorespiratory variables: central effects of pituitary endorphins in shock. Am J Physiol 241 (Heart & Circ Physiol) 10: H479 — H495Google Scholar
  43. 43.
    Holaday JW, Pasternak GW, D’Amato RJ, et al. (1983) Naloxazone lacks therapeutic effects in endotoxic shock yet blocks the effects of naloxone. Eur J Pharmacol 89: 293–296PubMedCrossRefGoogle Scholar
  44. 44.
    Holaday JW, Ruvio BA, Faden AI (1981) Thyrotropin releasing hormone improves blood pressure and survival in endotoxic shock. Eur J Pharmacol 74: 101–105PubMedCrossRefGoogle Scholar
  45. 45.
    Holaday JW, Ruvio BA, Robles LE, et al. (1982) ICI MI54,129, a putative delta antagonist, reverses endotoxic shock without altering morphine analgesia. Life Sci 31: 2209–2212PubMedCrossRefGoogle Scholar
  46. 46.
    Holaday JW, Tortella FC (1984) Multiple opioid receptors: Possible physiological functions of, u and a binding sites in vivo. In: Mueller EE, Genazzani AR (eds) Central and peripheral endorphins. Raven, New York, pp 237–250Google Scholar
  47. 47.
    Holaday JW, Tseng LF, Loh HH, et al. (1978) Thyrotropin releasing hormone antagonizes ß-endorphin hypothermia and catalepsy. Life Sci 22: 1537–1544PubMedCrossRefGoogle Scholar
  48. 48.
    Horita A, Carino MA, Lai H (1986) Pharmacology of thyrotropin-releasing hormone. Ann Rev Pharmacol Toxicol 26: 311–332CrossRefGoogle Scholar
  49. 49.
    Horton JW, Tuggle DW, Kiser RS (1984) Effect of temperature on naloxone treatment in canine hemorrhagic shock. Circ Shock 14: 251–265PubMedGoogle Scholar
  50. 50.
    Hughes GS (1984) Naloxone and methylprednisolone sodium succinate enhance sympathomedullary discharge in patients with septic shock. Life Sci 35 (23): 2319–2326PubMedCrossRefGoogle Scholar
  51. 51.
    Jansen HF, Lutherer LO (1980) Ventriculocisternal administration of naloxone protects against severe hypotension during endotoxin shock. Brain Res 194: 608–612CrossRefGoogle Scholar
  52. 52.
    Koyama S, Santiesteban HL, Ammons WS, et al. (1983) The effects of naloxone on the peripheral sympathetics in cat endotoxin shock. Circ Shock 10: 7–13PubMedGoogle Scholar
  53. 53.
    Krumins SA, Faden AI, Feuerstein G (1985) Opiate binding in rat hearts: modulation of binding after hemorrhagic shock. Biochem and Biophys Res Comm 127 (1): 120–128CrossRefGoogle Scholar
  54. 54.
    Lechner RB, Gurll NJ, Reynolds DG (1985) Intercoronary naloxone in hemorraghic shock: dose-dependent stereospecific effects. Am J Physiology 249: H272–277Google Scholar
  55. 55.
    Lechner RB, Gurll NJ, Reynolds DG (1985) Naloxone potentiates the cardiovascular effects of catecholamines in canine hemorrhagic shock. Circ Shock 16: 347–361PubMedGoogle Scholar
  56. 56.
    Lechner RB, Gurll NJ, Reynolds DG (1985) Role of the autonomic nervous system in mediating the response to naloxone in canine hemorrhagic shock. Circ Shock 16: 279–295PubMedGoogle Scholar
  57. 57.
    Long JB, Lake CR, Reid AA, et al. (1986) Effects of naloxone and thyrotropin releasing hormone on plasma catecholamines, corticosterone, and arterial pressure in normal and endotoxemic rats. Circ Shock 18: 1–10PubMedGoogle Scholar
  58. 58.
    Long JB, Ruvio BA, Glatt CE, et al. (1984) ICI 174864, a putative 1 opioid antagonist, reverses endotoxemic hypotension: pretreatment with dynorphin 1–13, a x agonist, blocks this action. Neuropeptides 5: 291–294PubMedCrossRefGoogle Scholar
  59. 59.
    Malcolm DS, Zaloga GP, Willey SC, et al. (1988) Naloxone potentiates epinephrine’s hypertensive effects in endotoxemic rats. Circ Shock, submittedGoogle Scholar
  60. 60.
    Manaker S, Winokur A, Rhodes CH, et al. (1985) Autoradiographic localization of thyrotropin-releasing hormone ( TRH) receptors in human spinal cord. Neurology 35: 328–332Google Scholar
  61. 61.
    McIntosh TK, Faden AI (1986) Thyrotropin-releasing hormone ( TRH) and circulatory shock. Circ Shock 18: 241–258Google Scholar
  62. 62.
    McIntosh TK, Palter M, Grasberger R, et al. (1985) Effect of an opiate antagonist (naloxone) and an agonist/antagonist (nalbuphine) in primate hemorrhagic shock. Circ Shock 17: 313–325PubMedGoogle Scholar
  63. 63.
    McMenamin DV, Smith EM, Blalock JE (1985) Endotoxin induction of leukocyte-derived proopiomelanocortin-related peptides. Infect Immun 48: 813–817Google Scholar
  64. 64.
    Miller RR, Menke JA, Hansen NB, Zwick DL, Bickers RG, Nowicki PT (1986) The effect of naloxone on the hemodynamics of the newborn piglet with septic shock. Pediatric Research 20 (8): 707–710PubMedCrossRefGoogle Scholar
  65. 65.
    Putterman C, Halpern P, Leykin Y, et al. (1986) Early use of naloxone in shock — a clinical trial. Resuscitation 13: 185–190PubMedCrossRefGoogle Scholar
  66. 66.
    Reynolds DG, Gurll NJ, Vargish T, et al. (1980) Blockade of opiate receptors with naloxone improves survival and cardiac performance in canine endotoxic shock. Circ Shock 7: 39–48PubMedGoogle Scholar
  67. 67.
    Riggs TR, Yano Y, Vargish T (1986) Morphine depression of myocardial function. Circ Shock 19: 31–38PubMedGoogle Scholar
  68. 68.
    Schadt JC, York DH (1981) The reversal of hemorrhagic hypotension by naloxone in conscious rabbits. Can J Physiol Pharmacol 59: 1208–1213PubMedCrossRefGoogle Scholar
  69. 69.
    Van DeMeer K, Valkenburg PW, Bastiaans AC, et al. (1986) Effect of naloxone on blood pressure and survival in different shock models in rats. Eur J Pharmacol 124: 299–308CrossRefGoogle Scholar
  70. 70.
    Weld JM, Kamerling SG, Combie JD, et al. (1984) The effects of naloxone on endotoxic and hemorrhagic shock in horses. Res Comm in Chem Pathol Pharmacol 44 (2): 227–238Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • J. W. Holaday

There are no affiliations available

Personalised recommendations