Skip to main content

Models for Evolution and Extinction

  • Conference paper
Book cover Scale Invariance and Beyond

Part of the book series: Centre de Physique des Houches ((LHWINTER,volume 7))

Abstract

There has been considerable recent interest on large scale evolution biology. In the physics community this was triggered by the scenario of punctuated equilibrium, proposed by Gould and Eldredge [1], and by the work of Bak and co-workers stressing the similarities between this framework and the paradigm of Self Organized Criticality[2, 3]. Analyzing the fossil record[3, 4, 5], it has been realized that evolution might not take place smoothly, with small variations occurring at a more or less constant rate. Rather it occurred in bursts of very high activity, characterized by mass extinction, separated by periods of apparent stasis. More precisely, one can measure the number s t of species (or of families) which went extinct in an interval dt (typically of the order of one million years) around time t. The signal s t is intermittent, with quiet periods separated by large peaks on any size. The distribution P(s) of s t behaves as a power law P(s) ~ s −τ with τ ≈ 2. As discussed at length in ref. [3, 4, 5, 6], the main issue is whether the ecosystem as a whole has to be regarded as being in a “normal” state, characterized by linear response to external perturbations, or whether it is in a “critical” state, where external perturbations can trigger fluctuations of any size. In the former case, one has to assume that mass extinction have been provoked by extreme external events, such as meteor impacts, volcano eruptions and the like. This assumption suggests that the statistics of mass extinction events should be related to that of extreme catastrophic events. The second scenario, on the other hand, describes ecology as a system which is poised in a critical state by its dynamics itself. Even small perturbations can propagate and amplify in such a state, and produce in the end a macroscopic change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. J. Gould and N. Eldredge, Paleobiology 3 (1977) 114.

    Google Scholar 

  2. P. Bak, C. Tang and K. Wiesenfeld, Phys. Rev. A 38 (1988) 364.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. K. Sneppen, P. Bak, H. Flyvbjerg, and M. H. Jensen, Proc. Nat. Acad. Sci. 92 (1995) 5209.

    Google Scholar 

  4. R. V. Solé, and J. Bascompte, Proc. Roy. Soc. B 263 (1996) 161

    Article  ADS  Google Scholar 

  5. ] R. V. Solé, S. C. Manrubia, M. Benton and P. Bak, Self-similarity in the fossil record,Nature (to appear).

    Google Scholar 

  6. M. E. J. Newman, Proc. Roy. Soc. London B 263 (1996) 1605.

    Google Scholar 

  7. P. Bak and M. Paczuski, to appear in “Physics of Biological Systems” Lecture Notes in Physics ( Springer-Verlag, Heidelberg, 1996 ).

    Google Scholar 

  8. P. Bak and K. Sneppen, Phys. Rev. Lett. 59 (1993) 381.

    Article  Google Scholar 

  9. M. Paczuski, P. Bak and S. Maslov, Phys. Rev. E 53 (1996) 414.

    Article  ADS  Google Scholar 

  10. M. Marsili, G. Caldarelli and M. Vendruscolo, Phys. Rev. E 53 (1995) 13

    Article  ADS  Google Scholar 

  11. M. Vendruscolo, P. De Los Rios, and L. Bonesi, Phys. Rev. E 54 (1996) 6053

    Article  ADS  Google Scholar 

  12. D. A. Head and G. J. Rodgers, preprint adap-org/9611003 (1996).

    Google Scholar 

  13. N. S. Goel, S. C. Maitra and E. W. Montroll, Rev. Mod. Phys. 42 (1971) 231

    Article  MathSciNet  ADS  Google Scholar 

  14. G. Abramson, Phys. Rev. E 55 (1997) 785.

    Article  ADS  Google Scholar 

  15. A. J. Lotka, J. Phys. Chem. 14 (1910) 271.Proc. Nat. Acad. Sci. 6 (1920) 410.

    Google Scholar 

  16. V. Volterra, Leçon sur la Theorie Mathématique de la Lutte pour la Vie ( Gautiers-Villars, Paris, 1931 ).

    Google Scholar 

  17. R. Redheffer and Z. Zhiming, Nonlinear Anal.-Th. Meth. & Appl. 5 (1981) 1303

    Google Scholar 

  18. Y. Takeuchi and N. Adachi, Ecol. Modelling 32 (1986) 95.

    Article  Google Scholar 

  19. R. V. Solé and S. C. Manrubia, Phys. Rev. E 54 (1996) R42.

    Article  ADS  Google Scholar 

  20. R. V. Solé and S. C. Manrubia, Phys. Rev. E 55 (1997)

    Google Scholar 

  21. R. V. Solé, J. Bascompte and S. C. Manrubia, Roy. Soc. London B 263 (1996) 1407.

    Google Scholar 

  22. R. Graber, M. Marsili, K. Sneppen and Y.-C. Zhang, in preparation.

    Google Scholar 

  23. R. W. Cottle, J.-S. Pang and R. E. Stone, The Linear Complementarity Problem ( Academic Press, London, 1992 ) p. 1.

    MATH  Google Scholar 

  24. To be precise, s t is the number of indices i where an extinction has taken place. We do not count unsuccessful species which did not survive at least one time step.

    Google Scholar 

  25. S. Zapperi, K. B. Lauritsen and H. E. Stanley, Phys. Rev. Lett. 75 (1995) 4071.

    Article  ADS  Google Scholar 

  26. S. Alexander and R. Orbach, Journ. de Phys. Lettres 43 (1982) L625.

    Article  Google Scholar 

  27. K. Hattori, T. Hattori and H. Watanabe, Progr. of Theor. Phys. Suppl. 92 (1987) 108.

    Article  MathSciNet  ADS  Google Scholar 

  28. J. E. Cohen, Community food webs: data and theory, (New York, Springer-Verlag, 1990 ). G. Caldarelli and U. Bastolla, private communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Marsili, M. (1997). Models for Evolution and Extinction. In: Dubrulle, B., Graner, F., Sornette, D. (eds) Scale Invariance and Beyond. Centre de Physique des Houches, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09799-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09799-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64000-4

  • Online ISBN: 978-3-662-09799-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics