Skip to main content

Defective and Defective Interfering RNAs of Monopartite Plus-strand RNA Plant Viruses

  • Chapter
Satellites and Defective Viral RNAs

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 239))

Abstract

The defective interfering (DI) RNAs represent one of several classes of symptom-modulating RNAs identified in association with RNA plant virus infections. Structurally, these molecules are derived from, and represent mutant forms of, the viral genome (Perrault 1981; Lazzarini et al. 1981). DI RNAs may contain distinct types of modifications; however, the most prevalent is the deletion of one or more large segments of sequence. Despite structural differences, the common effect of the mutation(s) is to render the DI RNAs dependent on their nondefective ‘parental’ genome for essential viral replication proteins. This, in turn, limits replication of these molecules to cells which are coinfected with the parental genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam G, Gaedigk K, Mundry KW (1983) Alterations of a plant rhabdovirus during successive mechanical transfers. Z Pllanzenkr Pfianzensch 90:28–35

    CAS  Google Scholar 

  • Burgyan J, Grieco F, Russo M (1989) A defective interfering RNA molecule in cymbidium ringspot virus infections. J Gen Virol 70:235–239

    Article  CAS  Google Scholar 

  • Burgyan J, Rubino L, Russo M (1991) De novo generation of cymbidium ringspot virus defective interfering RNA. J Gen Virol 72:505–509

    Article  PubMed  CAS  Google Scholar 

  • Burgyan J, Dalmay T, Rubino L, Russo M (1992) The replication of cymbidium ringspot tombusvirus defective interfering-satellite RNA hybrid molecules. Virology 190:579–586

    Article  PubMed  CAS  Google Scholar 

  • Burgyan J, Salanki K, Dalmay T, Russo M (1994) Expression of homologous and heterologous viral coat protein-encoding genes using recombinant DI RNA from cymbidium ringspot tombusvirus. Gene 138:159–163

    Article  PubMed  CAS  Google Scholar 

  • Calvert LA, Cuervo MI, Ospina MD, Fauquet CM, Ramirez B (1996) Characterization of cassava common mosaic virus and a defective RNA species. J Gen Virol 77:525–530

    Article  PubMed  CAS  Google Scholar 

  • Carpenter CD, Oh J, Zhang C, Simon AE (1995) Involvement of a stem-loop structure in the location of junction sites in viral RNA recombination. J Mol Biol 245:608–622

    Article  PubMed  CAS  Google Scholar 

  • Cascone PJ, Carpenter CD, Li XH, Simon AE (1990) Recombination between satellite RNAs of turnip crinkle virus. EMBO J 9:1709–1715

    PubMed  CAS  Google Scholar 

  • Cascone PJ, Haydar TF, Simon AE (1993) Sequences and structures required for recombination between virus-associated RNAs. Science 260:801–805

    Article  PubMed  CAS  Google Scholar 

  • Celix A, Rodriguez-Cerezo E, Garcia-Arenal F (1997) New satellite RNAs, but not DI RNAs, are found in natural populations of tomato bushy stunt virus. Virology 239:277–284

    Article  PubMed  CAS  Google Scholar 

  • Chang YC, Borja M, Scholthof HB, Jackson AO, Morris TJ (1995) Host effects and sequences essential for accumulation of defective interfering RNAs of cucumber necrosis and tomato bushy stunt tombusviruses. Virology 210:41–53

    Article  PubMed  CAS  Google Scholar 

  • Chetverin AB, Chetverina HV, Demidenko AA, IJgarov VI (1997) Nonhomologous RNA recombination in a cell-free system: evidence for a transesterilication mechanism guided by secondary structure. Cell 88:503–513

    Article  PubMed  CAS  Google Scholar 

  • Dalmay T, Szittya G, Burgyan J (1995) Generation of defective interfering RNA dimers of cymbidium ringspot tombusvirus. Virology 207:510–517

    Article  PubMed  CAS  Google Scholar 

  • Dolja VV, Darasev AV, Koonin EV (1994) Molecular biology and evolution of closteroviruses: sophisticated build-up of large RNA genomes. Annu Rev Phytopathol 32:261–285

    Article  CAS  Google Scholar 

  • Figlerowicz M, Nagy PD, Bujarski JJ (1997) A mutation in the putative RNA polymerase gene inhibits nonhomologous, but not homologous, genetic recombination in an RNA virus. Proc Natl Acad Sci USA 94:2073–2078

    Article  PubMed  CAS  Google Scholar 

  • Finnen RL, Rochon DM (1993) Sequence and structure of defective interfering RNAs associated with cucumber necrosis virus infections. J Gen Virol 74:1715–1720

    Article  PubMed  CAS  Google Scholar 

  • Finnen RL, Rochon DM (1995) Characterization and biological activity of DI RNA dimers formed during cucumber necrosis virus coinfections. Virology 207:282–286

    Article  PubMed  CAS  Google Scholar 

  • Graves MV, Pogany J, Romero J (1996) Defective interfering RNAs and defective viruses associated with multipartite RNA viruses of plants. Semin Virol 7:399–408

    Article  CAS  Google Scholar 

  • Havelda Z, Burgyan J (1995) 3′ Terminal putative stem-loop structure required for the accumulation of cymbidium ringspot viral RNA. Virology 214:269–272

    Article  PubMed  CAS  Google Scholar 

  • Havelda Z, Dalmay T, Burgyan J (1995) Localization of cis-acting sequences essential for cymbidium ringspot tombusvirus defective interfering RNA replication. J Gen Virol 76:2311–2316

    Article  PubMed  CAS  Google Scholar 

  • Havelda Z, Dalmay T, Burgyan J (1997) Secondary structure-dependent evolution of cymbidium ringspot virus defective interfering RNA. J Gen Virol 78:1227–1234

    PubMed  CAS  Google Scholar 

  • Hillman BI, Schlegel DE, Morris TJ (1985) Effects of low molecular weight RNA and temperature on tomato bushy stunt virus symptom expression. Phytopathology 75:361–365

    Article  Google Scholar 

  • Hillman BI, Carrington JC, Morris TJ (1987) A defective interfering RNA that contains a mosaic of a plant virus genome. Cell 51:427–433

    Article  PubMed  CAS  Google Scholar 

  • Inoue AK, Kormelink R, Nagata T, Kitajima EW, Goldbach R, Peters D (1997) Temperature and host effects on the generation of tomato spotted wilt virus defective interfering RNAs. Phytopathology 87:1168–1173

    Article  Google Scholar 

  • Jones RW, Jackson AO, Morris TJ (1990) Defective-interfering RNAs and elevated temperatures inhibit replication of tomato bushy stunt virus in inoculated protoplasts. Virology 176:539–545

    Article  PubMed  CAS  Google Scholar 

  • Knorr DA, Morris TJ (1991) Origin and evolution of defective interfering RNAs of tomato bushy stunt virus. In: Herrmann RG, Larkins B (eds) Plant molecular biology, 2. Plenum, New York, pp 57–66

    Chapter  Google Scholar 

  • Knorr DA, Mullin RH, Hearne PQ, Morris TJ (1991) De novo generation of defective interfering RNAs of tomato bushy stunt virus by high multiplicity passage. Virology 181:193–202

    Article  PubMed  CAS  Google Scholar 

  • Kollar A, Dalmay T, Burgyan J (1993) Defective interfering RNA-mediated resistance against cymbidium ringspot tombusvirus in transgenic plants. Virology 193:313–318

    Article  PubMed  CAS  Google Scholar 

  • Kong Q, Oh J, Carpenter CD, Simon AE (1997) The coat protein of turnip crinkle virus is involved in subviral RNA-mediated symptom modulation and accumulation. Virology 238:478–485

    Article  PubMed  CAS  Google Scholar 

  • Koonin EV, Dolja VV (1993) Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. CRC Crit Rev Biochem Mol Biol 28:375–430

    Article  CAS  Google Scholar 

  • Lai MMC (1992) RNA recombination in animal and plant viruses. Microbiol Rev 56:61–79

    PubMed  CAS  Google Scholar 

  • Law MD, Morris TJ (1994) De novo generation and accumulation of tomato bushy stunt virus defective interfering RNAs without serial host passage. Virology 198:377–380

    Article  PubMed  CAS  Google Scholar 

  • Lazzarini RA, Keene JD, Schubert M (1981) The origins of defective interfering particles of the negative-strand RNA viruses. Cell 26:145–154

    Article  PubMed  CAS  Google Scholar 

  • Li XH, Simon AE (1993) In vivo accumulation of a turnip crinkle virus defective interfering RNA is affected by alterations in size and sequence. J Virol 65:4582–4590

    Google Scholar 

  • Li XH, Heaton LA, Morris TJ, Simon AE (1989) Turnip crinkle virus defective interfering RNAs intensify viral symptoms and are generated de novo. Proc Natl Acad Sci USA 86:9173–9177

    Article  PubMed  CAS  Google Scholar 

  • Mawassi M, Darasev AV, Mietkiewska E, Gafny R, Lee RF, Dawson WO, Bar-Joseph M (1995a) Defective RNA molecules associated with citrus tristeza virus. Virology 208:383–387

    Article  PubMed  CAS  Google Scholar 

  • Mawassi M, Mietkiewska E, Hilf ME, Ashoulin L, Karasev AV, Gafny R, Lee RF, Garnsey SM, Dawson WO, Bar-Joseph M (1995b) Multiple species of defective RNAs in plants infected with citrus tristeza virus. Virology 214:264–268

    Article  PubMed  CAS  Google Scholar 

  • Nagy PD, Bujarski JJ (1993) Targeting the site of RNA-RNA recombination in brome mosaic virus with antisense sequences. Proc Natl Acad Sci USA 90:6390–6394

    Article  PubMed  CAS  Google Scholar 

  • Nagy PD, Bujarski JJ (1995) Efficient system of homologous RNA recombination in brome mosaic virus: sequences and structure requirements and accuracy of crossovers. J Virol 69:131–140

    PubMed  CAS  Google Scholar 

  • Nagy PD, Bujarski JJ (1997) Engineering of homologous recombination hotspots with AU-rich sequences in brome mosaic virus. J Virol 71:3799–3810

    PubMed  CAS  Google Scholar 

  • Nagy PD, Simon AE (1997) New insights into the mechanisms of RNA recombination. Virology 235:1–9

    Article  PubMed  CAS  Google Scholar 

  • Nagy PD, Carpenter CD, Simon AE (1997) A novel 3′-end repair mechanism in an RNA virus. Proc Natl Acad Sci USA 94:1113–1118

    Article  PubMed  CAS  Google Scholar 

  • Perrault J (1981) Origin and replication of defective interfering particles. In: Compans RW, Cooper M, Koprowski H, et al (eds) Current topics in microbiology and immunology, vol 93. Springer, Berlin Heidelberg New York, pp 151–207

    Google Scholar 

  • Rochon DM (1991) Rapid de novo generation of defective interfering RNA by cucumber necrosis virus mutants that do not express the 20-kDa nonstructural protein. Proc Natl Acad Sci USA 88:11153–11157

    Article  PubMed  CAS  Google Scholar 

  • Romero J, Huang Q, Pogany J, Bujarski JJ (1993) Characterization of defective interfering RNA components that increase symptom severity of broad bean mottle virus infections. Virology 194:576–584

    Article  PubMed  CAS  Google Scholar 

  • Roossinck MJ, Sleat D, Palukaitis P (1992) Satellite RNAs of plant viruses: structures and biological effects. Microbiol Rev 56:265–279

    PubMed  CAS  Google Scholar 

  • Rubino L, Russo M (1997) Molecular analysis of the pothos latent virus genome. J Gen Virol 78:1219–1226

    PubMed  CAS  Google Scholar 

  • Rubino L, Burgyan J, Russo M (1995) Molecular cloning and complete nucleotide sequence of carnation Italian ringspot tombusvirus genomic and defective interfering RNAs. Arch Virol 140:2027–2039

    Article  PubMed  CAS  Google Scholar 

  • Rubio T, Borja M, Scholthof HB, Feldstein P, Bruening G, Morris TJ, Jackson AO (1998) Broad spectrum resistance to tombusviruses elicited by defective interfering RNAs in transgenic plants (in preparation)

    Google Scholar 

  • Russo M, Burgyan J, Martelli GP (1994) Molecular biology of Tombusviridae. Adv Virus Res 44:381–428

    Article  PubMed  CAS  Google Scholar 

  • Scholthof HB, Morris TJ, Jackson AO (1993) The capsid protein gene of tomato bushy stunt virus is dispensable for systemic movement and can be replaced for localized expression of foreign genes. Mol Plant Microbe Interact 6:309–322

    Article  CAS  Google Scholar 

  • Scholthof HB, Scholthof KB, Jackson AO (1995a) Identification of tomato bushy stunt virus host-specific symptom determinants by expression of individual genes from a potato virus X vector. Plant Cell 7:1157–1172

    PubMed  CAS  Google Scholar 

  • Scholthof KB, Scholthof HB, Jackson AO (1995b) The effect of defective interfering RNAs on the accumulation of tomato bushy stunt virus proteins and implications for disease attenuation. Virology 211:324–328

    Article  PubMed  CAS  Google Scholar 

  • Simon AE, Howell SH (1986) The virulent satellite RNA of turnip crinkle virus has a major domain homologous to the 3′ end of the helper virus genome. EMBO J 5:3423–3428

    PubMed  CAS  Google Scholar 

  • Song C, Simon AE (1994) RNA-dependent RNA polymerase from plants infected with turnip crinkle virus can transcribe (+)- and (-)-strands of virus-associated RNAs. Proc Natl Acad Sci USA 91:8792–8796

    Article  PubMed  CAS  Google Scholar 

  • Song C, Simon AE (1995) Synthesis of novel products in vitro by an RNA-dependent RNA polymerase. J Virol 69:4020–4028

    PubMed  CAS  Google Scholar 

  • Verkleij F, Peters D (1983) Characterization of a defective form of tomato spotted wilt virus. J Gen Virol 64:677–686

    Article  CAS  Google Scholar 

  • White KA (1996) Formation and evolution of tombusvirus defective interfering RNAs. Semin Virol 7:409–416

    Article  CAS  Google Scholar 

  • White KA, Morris TJ (1994a) Enhanced competitiveness of tomato bushy stunt virus defective interfering RNAs by segment duplication or nucleotide insertion. J Virol 68:6092–6096

    PubMed  CAS  Google Scholar 

  • White KA, Morris TJ (1994b) Nonhomologous RNA recombination in tombusviruses: generation and evolution of defective interfering RNAs by stepwise deletions. J Virol 68:14–24

    PubMed  CAS  Google Scholar 

  • White KA, Morris TJ (1995) RNA determinants of junction site selection in RNA virus recombinants and defective interfering RNAs. RNA 1:1029–1040

    PubMed  CAS  Google Scholar 

  • White KA, Bancroft JB, Mackie GA (1991) Defective RNAs of clover yellow mosaic virus encode nonstructural/coat protein fusion products. Virology 183:479–486

    Article  PubMed  CAS  Google Scholar 

  • White KA, Bancroft JB, Mackie GA (1992a) Coding capacity determines in vivo accumulation of a defective RNA of clover yellow mosaic virus. J Virol 66:3069–3076

    PubMed  CAS  Google Scholar 

  • White KA, Bancroft JB, Mackie GA (1992b) Mutagenesis of a hexanucleotide sequence conserved in potexvirus RNAs. Virology 189:817–820

    Article  PubMed  CAS  Google Scholar 

  • Yang G, Mawassi M, Ashoulin L, Gafny R, Gava V, Gal-On A, Bar-Joseph M (1997a) A cDNA clone from a defective RNA of citrus tristeza virus is infective in the presence of the helper virus. J Gen Virol 78:1765–1769

    PubMed  CAS  Google Scholar 

  • Yang G, Mawassi M, Gofman R, Gafny R, Bar-Joseph M (1997b) Involvement of a subgenomic mRNA in the generation of a variable population of defective citrus tristeza virus molecules. J Virol 71:9800–9802

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

White, K.A., Morris, T.J. (1999). Defective and Defective Interfering RNAs of Monopartite Plus-strand RNA Plant Viruses. In: Vogt, P.K., Jackson, A.O. (eds) Satellites and Defective Viral RNAs. Current Topics in Microbiology and Immunology, vol 239. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09796-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09796-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-09798-4

  • Online ISBN: 978-3-662-09796-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics