Skip to main content

Adaptation of Roots to Drought

  • Chapter
Root Ecology

Part of the book series: Ecological Studies ((ECOLSTUD,volume 168))

Abstract

In this chapter we examine the morphological, physiological and biochemical adaptations of roots to drought and discuss how roots perceive soil drying and communicate such information to the shoots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Auge RM, Green CD, Stodola AJW, Saxton AM, Olinick JB, Evans RM (2000) Correlations of stomatal conductance with hydraulic and chemical factors in several deciduous tree species in natural habitats. New Phytol 145:183–500

    Article  Google Scholar 

  • Amodeo G, Talbot LD, Zeiger E (1996) Use of potassium and sucrose by onion guard cells during a daily cycle of osmoregulation. Plant Cell Physiol 37:575–579

    Article  CAS  Google Scholar 

  • Atwell BJ, Newsome JC (1990) Turgor pressure in mechanically impeded lupin roots. Aust J Plant Physiol 17:49–56

    Article  Google Scholar 

  • Bacon MA, Wilkinson S, Davies WJ (1998) pH-regulation cell expansion in ABA-depen-dent in droughted plants. Plant Physiol 118:1507–1515

    Article  PubMed  CAS  Google Scholar 

  • Borei C, Frey A, Marion-Poll A, Tardieu F Simmoneau T (2001) Does engineering abscisic acid biosynthesis in Nicotiana plumbaginifoliamodify stomatal response to drought? Plant Cell Environ 24:477–49

    Article  Google Scholar 

  • Clark DG, Gubrium EK, Barett JE, Nell TA, Klee HJ (1999) Root formation in ethylene-insensitive plants. Plant Physiol 121:53–59

    Article  PubMed  CAS  Google Scholar 

  • Comstock J (2002) Hydraulic and chemical signalling in the control of stomatal conductance and transpiration. J Exp Bot(in press)

    Google Scholar 

  • Davies WJ, Gowing DJG (1999) Plant responses to small perturbations in soil water status. In: Press MC, Scholes J, Barker M (eds) Plant physiological ecology. Blackwell, Oxford, pp 67–89

    Google Scholar 

  • Davies WJ, Bacon MA, Thompson DS, Soeih W, Gonnzalez-Rodrigues L (2000) Regulation of leaf and fruit growth in plants growing in drying soil: exploitation of a plants chemical signalling system and hydraulic architecture to increase the efficiency of water use in agriculture. J Exp Bot 51:1617–1626

    Article  PubMed  CAS  Google Scholar 

  • Freundl E, Steudle E, Hartung W (1998) Water uptake by roots of maize and sunflower affects the radial transport of abscisic acid and its concentration in the xylem. Planta 207:8–19

    Article  CAS  Google Scholar 

  • Fry SC, Smith RC, Renwick KF, Martin DJ, Hodge SK (1992) Xyloglucan endotransglyco-sylase a new cell-wall loosening enzyme activity from plants. Biochem J 282:821–828

    PubMed  CAS  Google Scholar 

  • Gowing DJ, Davies WJ, Jones HG (1990) A positive root-sourced signal as an indicator of soil drying in apple. Malus domesticaBorkh. J Exp Bot 41:1535–1540

    Article  Google Scholar 

  • Hartung W, Davies WJ (1991) Drought-induced changes in physiology and ABA. In: Davies WJ, Jones HG (eds) Abscisic acid. Bios Scientific Publishers, Oxford

    Google Scholar 

  • Hartung W, Sauter A, Turner N, Fillery I, Heilmeier H (1996) Abscisic acid in soils: what is its function and which factors and mechanisms influence its concentration? Plant Soil 184:105–110

    Article  CAS  Google Scholar 

  • Hartung W, Sauter A, Hose E (2002) Abscisic acid in the xylem: where does it come from and where does it go? J Exp Bot 27:27–32

    Article  Google Scholar 

  • Hetherington A (1998) Plant physiology: spreading the drought warning. Curr Biol 8:R911-R913

    Article  PubMed  CAS  Google Scholar 

  • Holbrook NM, Shashidar VR, James RA, Munns R (2002) Stomatal control in tomato with ABA-deficient roots: response of grafted plants to soil drying. J Exp Bot 53 (in press)

    Google Scholar 

  • Hussain A, Black CR, Taylor LB, Roberts JA (1999) Soil compaction: a role for ethylene in regulating leaf expansion and shoot growth in tomato? Plant Physiol 121:1227–1237

    Article  PubMed  CAS  Google Scholar 

  • Jackson GE, Irvine J, Grace J, Khalil IA (1995) Abscisic acid concentrations and fluxes in droughted conifer saplings. Plant Cell Environ 18:13–22

    Article  CAS  Google Scholar 

  • Kavi Kishor PBK, Hong ZL, Miao GH, Hu CAA, Verma DPS (1995) Overexpression of delta-pyrroline-5-carboxylate syntheses increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394

    Google Scholar 

  • Kramer P (1988) Changing concepts regarding plant water relations. Plant Cell Environ 11:565–568

    Article  Google Scholar 

  • Kuang JB, Turner NC, Henson IE (1990) Influence of xylem water potential on leaf elongation and osmotic adjustment of wheat and lupin. J Exp Bot 41:217–221

    Article  Google Scholar 

  • Lips HS (1997) The role of inorganic nitrogen ions in plant adaptation processes. Russ J Plant Physiol 44:421–431

    CAS  Google Scholar 

  • Lu P, Outlaw WH, Smith BG, Freed GA (1997) A new mechanism for the regulation of stomatal aperture in intact leaves — accumulation of mesophyll-derived sucrose in the guard-cell wall of Vicia faba. Plant Physiol 114:109–118

    PubMed  CAS  Google Scholar 

  • Mencuccinni M, Mambelli S, Comstock J (2000) Stomatal responsiveness to leaf water status in common bean (Phaseolus vulgarisL.) is a function of time of day. Plant Cell Environ 23:1109–1118

    Article  Google Scholar 

  • Munns R (1988) Why measure osmotic adjustment? Aust J Plant Physiol 15:717–726

    Article  Google Scholar 

  • Munns R, Cramer G (1996) Is co-ordination of leaf and root growth mediated by abscisic acid? Plant Soil 185:33–49

    Article  CAS  Google Scholar 

  • Neales TF, Mcleod AL (1991) Do leaves contribute to the abscisic acid present in the xylem sap of droughted sunflowers. Plant Cell Environ 14:979–986

    Article  CAS  Google Scholar 

  • Osonubi O, Davies WJ (1978) Solute accumulation in leaves and roots of woody plants subjected to water stress. Oecologia 32:323–332

    Article  Google Scholar 

  • Palmer S J, Ber ridge DM, McDonald AJS, Davies WJ (1996) Control of leaf expansion in sunflower (Helianthus annuusL) by nitrogen nutrition. J Exp Bot 47:359–368

    Article  CAS  Google Scholar 

  • Puliga S, Vazzana C, Davies WJ (1996) Control of crops leaf growth by chemical and hydraulic influences. J Exp Bot 47:529–537

    Article  CAS  Google Scholar 

  • Richards BG, Greacen EL (1986) Mechanical stresses on an expanding cylindrical root analog in antigranulocytes media. Aust J Soil Res 24:393–404

    Article  Google Scholar 

  • Roberts SK, Snowman BN (2000) The effect of ABA on channel mediated K+transport across higher plant roots. J Exp Bot 51:1585–1594

    Article  PubMed  CAS  Google Scholar 

  • Saab IN, Sharp RE, Pritchard J, Voetberg GS (1990) Increased endogenous abscisic acid maintains primary root-growth and inhibits shoot growth of maize seedlings at low water potentials. Plant Physiol 93:1329–1336

    Article  PubMed  CAS  Google Scholar 

  • Shaner DL, Boyer JS (1976) Nitrate reductase activity in maize leaves. II. Regulation by nitrate flux at low water potential. Plant Physiol 58: 505–509

    Article  PubMed  CAS  Google Scholar 

  • Sharp RE, Davies WJ (1979) Solute regulation and growth by roots and shoots of water-stressed maize plants. Planta 147:43–49

    Article  CAS  Google Scholar 

  • Sharp RE, Davies WJ (1985) Root growth and water uptake by maize plants in drying soil. J Exp Bot 36:1441–1456

    Article  Google Scholar 

  • Sharp RE, Silk WK, Hsiao TC (1988) Growth of the maize primary root at low water potentials. 1. Spatial distribution of expansive growth. Plant Physiol 87:50–57

    Article  PubMed  CAS  Google Scholar 

  • Sharp RE, Hsiao TC, Silk WC (1990) Growth of the maize primary root at low water potentials. 2. Role of growth and deposition of hexose and potassium in osmotic adjustment. Plant Physiol 93:1337–1346

    Article  PubMed  CAS  Google Scholar 

  • Sharp RE, LeNoble ME, Else MA, Thorne ET, Gherardi F (2000) Endogenous ABA maintains shoot growth in tomato independently of effects on plant water balance: evidence for an interaction with ethylene. J Exp Bot 51:1575–1584

    Article  PubMed  CAS  Google Scholar 

  • Sharp RE, LeNoble ME (2002) ABA, ethylene and the control of shoot and root growth under water stress. J Exp Bot 53:33–37

    Article  PubMed  CAS  Google Scholar 

  • Slovik S, Daeter W, Hartung W (1995) Comp artmental redistribution and long-distance transport of abscisic acid (ABA) in plants as influenced by environmental changes in the rhizosphere — a biomathematical model. J Exp Bot 46:881–894

    Article  CAS  Google Scholar 

  • Spollen WG, Sharp RE (1991) Spatial distribution of turgor and root growth at low water potentials. Plant Physiol 96:438–443

    Article  PubMed  CAS  Google Scholar 

  • Spollen WG, Sharp RE, Saab IN, Wu Y (1993) Regulation of cell expansion in roots and shoots at low water potentials. In: Smith JAC, Griffiths H (eds) Water deficits. Bios Scientific Publishers, Oxford, pp 37–52

    Google Scholar 

  • Spollen WG, LeNoble ME, Samuels TD, Bernstein N, Sharp RE (2000) Abscisic acid accumulation maintains primary root elongation at low water potential by restricting ethylene production. Plant Physiol 122:967–976

    Article  PubMed  CAS  Google Scholar 

  • Steudle E, Petersen CA (1998) How does water get through roots? J Exp Bot 49:775–788

    CAS  Google Scholar 

  • Tardieu F, Zhang J, Katerji N, Bathenod O, Palmer S, Davies WJ (1992) Xylem ABA controls the stomatal conductance of field grown maize subjected to soil compaction or soil drying. Plant Cell Environ 15:193–197

    Article  CAS  Google Scholar 

  • Tardieu F, Lafarge T, Simonneau T (1996) Stomatal control by fed or endogenous ABA in sunflower: interpretation of correlations between leaf water potential and stomatal conductance in anisohydric species. Plant Cell Environ 19:75–84

    Article  CAS  Google Scholar 

  • Tissera P, Ayres PG (1986) Endogenous ethylene affects the behaviour of stornata in epidermis isolated from rust infected fava bean. New Phytol 104:3–6

    Article  Google Scholar 

  • Tyerman SD, Bohnert HJ, Maurel C, Steudle E, Smith JAC (1999) Plant aquaporins: their molecular biology, biophysics and significance for plant water relations. J Exp Bot 50:1055–1071

    CAS  Google Scholar 

  • Voetberg GS, Sharp RE (1991) Growth of the maize primary root at low water potentials. 3. Role of increased proline deposition in osmotic adjustment. Plant Physiol 96:1125–1130

    Google Scholar 

  • Volaire F, Thomas H (1995) Effects of drought on water relations mineral uptake water-soluble carbohydrate and survival of two contrasting populations of cocksfoot (Dacytylis glomerataL). Ann Bot 75:513–524

    Article  Google Scholar 

  • VanVolkenburgh E (1999) Leaf expansion — an integrating plant behaviour. Plant Cell Environ 22:1463–1473

    Article  Google Scholar 

  • Wilkinson S (1999) pH as a stress signal. Plant Growth Regulation 29:87–99

    Article  CAS  Google Scholar 

  • Wilkinson S, Davies WJ (2002) ABA-based chemical signalling: the co-ordination of responses to stress in plants. Plant Cell Environ 25:195–210

    Article  PubMed  CAS  Google Scholar 

  • Winch S, Pritchard J (1999) Acid-induced wall loosening is confined to the accelerating region of the root growing zone. J Exp Bot 50:1481–1487

    CAS  Google Scholar 

  • Wu YJ, Spollen WG, Sharp RE, Hetherington PR, Fry SC (1994) Root-growth maintenance at low water potentials — increased activity of xyloglucan endotransglycosylase and its possible regulation by ABA. Plant Physiol 106:607–615

    Article  PubMed  CAS  Google Scholar 

  • Wu YJ, Sharp RE, Durachko DM, Cosgrove DJ (1996) Growth maintenance of the maize primary root at low water potentials involves increases in cell-wall extension properties, expansin activity and cell wall susceptibility to expansion. Plant Physiol 111:765–772

    PubMed  CAS  Google Scholar 

  • Zacarias L, Reid MS (1992) Inhibition of ethylene action prevents root penetration through compressed media in tomato (Lycopersicon essculentum)seedlings. Physiol Plant 86:301–307

    Article  CAS  Google Scholar 

  • Zwieniecki MA, Melcher PJ, Hobrook NM (2001) Hydrogel control of xylem hydraulic resistance in plants. Science 291:1059–1062

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Davies, W.J., Bacon, M.A. (2003). Adaptation of Roots to Drought. In: de Kroon, H., Visser, E.J.W. (eds) Root Ecology. Ecological Studies, vol 168. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09784-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09784-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05520-1

  • Online ISBN: 978-3-662-09784-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics