Skip to main content

The Control of Carbon Acquisition by and Growth of Roots

  • Chapter
Root Ecology

Part of the book series: Ecological Studies ((ECOLSTUD,volume 168))

Abstract

What controls the rate of growth of roots? Behind this deceptively simple question lie a very complex set of processes within the plant and a wide range of environmental variables that affect root growth. To begin to answer it, we will simplify by making the assumption that the question is nearly the same as this: what controls the rate of net acquisition of carbon by roots? A consideration of the gross fluxes of carbon (C) that together constitute the net flux into a root (Table 4.1) is thus central to our argument.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amthor JS (1989) Respiration and Crop Productivity. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Atkin OK, Edwards EJ, Loveys BR (2000) Response of root respiration to changes in temperature and its relevance to global warming. New Phytol 147:141–53

    Article  CAS  Google Scholar 

  • Atkinson CJ and Farrar JF 1983 Allocation of photo synthetically fixed carbon in Festuca ovina and Nardus strida. New Phytol 95:5519–5531

    Google Scholar 

  • Bacic A, Moody S, Clarke AE (1986) Structural analysis of secreted root slime from maize (Zea mays L.). Plant Physiol 80:771–777

    Article  PubMed  CAS  Google Scholar 

  • Barber SA (1984) Soil nutrient bioavailability: a mechanistic approach. Wiley Inter-science, New York

    Google Scholar 

  • Bauermeister A, Dale JE, Williams EJ, Scobie J (1980) Movement of 14C- and nC-labelled assimilate in wheat leaves: the effect of IA A. J Exp Bot 31:1199–1209

    Article  CAS  Google Scholar 

  • Beck E (1996) Regulation of shoot/root ratio by cytokinins from roots in Urtica dioica. Plant Soil 185:3–12

    Article  CAS  Google Scholar 

  • Bell CI, Milford GFJ, Leigh RA (1996) Sugar beet. In: Zamski E, Schaffer AA (eds) Pho-toassimilate distribution in plants and crops. Dekker, New York, pp 691–707

    Google Scholar 

  • Bingham IJ, Farrar JF (1988) Regulation of respiration in roots of barley. Physiol Plant 70:491–498

    Article  Google Scholar 

  • Bret-Harte MS, Silk WK (1994) Nonvascular symplastic diffusion of sucrose cannot satisfy the carbon demands of growth in the primary root tip of Zea mays. Plant Physiol 105:19–33

    PubMed  CAS  Google Scholar 

  • Brouwer R (1962) Nutritive influences on the distribution of dry matter in the plant. Neth J Agric Sci 10:399–408

    Google Scholar 

  • Brouwer H (1981) Functional equilibrium: sense or nonsense? Neth J Agric Sci 31:335–348

    Google Scholar 

  • Cakmak I, Marschner H (1988) Increase in membrane permeability and exudation in roots of zinc deficient plants. J Plant Physiol 132:356–361

    Article  CAS  Google Scholar 

  • Canny MJ (1973) Phloem translocation. Cambridge University Press, Cambridge

    Google Scholar 

  • Canny MJ (1990) What becomes of the transpiration stream? New Phytol 114:341–368

    Article  Google Scholar 

  • Chapin FS, Moilanen L, Kielland K (1993) Preferential use of organic nitrogen for growth by a nonmycorrhizal arctic sedge. Nature 361:150–153

    Article  CAS  Google Scholar 

  • Chapleo S, Hall JL (1989) Sugar unloading in roots of Ricinus communis. New Phytol 111:381–390

    Article  CAS  Google Scholar 

  • Ciereszko I, Farrar JF, Rychter A (1999) Compartmentation and fluxes of sugars in roots of Phaseolus vulgaris under phosphate deficiency. Biol Plant 42:223–231

    Article  CAS  Google Scholar 

  • Cook MG, Evans LT (1978) Effect of relative size and distance of competing sinks on the distribution of photosynthetic assimilate in wheat. Aust J Plant Physiol 5:495–509

    Article  CAS  Google Scholar 

  • Curl EA, Trueglove B (1986) The rhizosphere. Advanced series in agricultural science 15. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Daie J, Watts M, Aloni B, Wyse RE (1986) In vitro and in vivo modification of sugar transport and translocation in celery by phytohormones. Plant Sci 46:35–41

    Article  CAS  Google Scholar 

  • Dick PS, ap Rees T (1975) The pathway of sugar transport in roots of Visum sativum. J Exp Bot 26:305–314

    Article  CAS  Google Scholar 

  • DiTomaso JM, Hart JJ, Kochian LV (1992) Transport kinetics and metabolism of exogenously applied putrescine in roots of intact maize seedlings. Plant Physiol 98:611–620

    Article  PubMed  CAS  Google Scholar 

  • Drew MC (1975) Comparison of the effects of a localised supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system and the shoot of barley. New Phytol 75:479–489

    Article  CAS  Google Scholar 

  • Farrar JF (1985) Fluxes of carbon in roots of barley plants. New Phytol 99:57–69

    Article  CAS  Google Scholar 

  • Farrar JF (1989) Fluxes and turnover of sucrose and fructans in healthy and diseased plants. J Plant Physiol 134:137–140

    Article  CAS  Google Scholar 

  • Farrar JF (1992) The whole plant: carbon partitioning during development. In: Pollock CJ, Farrar JF, Gordon AJ (eds) Carbon partitioning within and between organisms. Bios Scientific Publishers, Oxford, pp 163–179

    Google Scholar 

  • Farrar JF (1996) Regulation of root weight ratio is mediated by sucrose: opinion. Plant Soil 185:13–19

    Article  CAS  Google Scholar 

  • Farrar JF (1999a) Carbohydrate: where does it come from, where does it go? In: Bryant JA, Burrell MM, Kruger NJ (eds) Plant carbohydrate biochemistry. Bios Scientific Publishers, Oxford, pp 29–46

    Google Scholar 

  • Farrar JF (1999b) Acquisition, partitioning and loss of carbon. In: Press MC, Scholes JD (eds) Advances in plant physiological ecology. Blackwell, Oxford, pp 25–43

    Google Scholar 

  • Farrar JF, Gunn S (1996) Effects of temperature and atmospheric carbon dioxide on source-sink relations in the context of climate change. In: Zamski E, Scheffer AA (eds) Photoassimilate distribution in plants and crops. Dekker, New York, pp 389–406

    Google Scholar 

  • Farrar JF, Gunn S (1998) Allocation: allometry, acclimation — and alchemy? In Lambers H, Poorter H, Van Vuuren MMI (eds) Inherent variation in plant growth. Backhuys, Leiden, pp 183–198

    Google Scholar 

  • Farrar JF, Jones CL (1985) Modification of respiration and carbohydrate status of barley roots by selective pruning. New Phytol 102:513–521

    Article  Google Scholar 

  • Farrar JF, Jones D (2000) The control of carbon acquisition by roots. New Phytol 147:43–53

    Article  CAS  Google Scholar 

  • Farrar JF, Lewis DH (1987) Nutrient relations in pathogenic and mutualistic infections. In: Ayres PG, Pegg GF (eds) Plant infecting fungi. Cambridge University Press, Cambridge, pp 92–132

    Google Scholar 

  • Farrar JF, Minchin PEH (1991) Carbon partitioning in split root systems of barley: relation to metabolism. J Exp Bot 42:1261–1269

    Article  CAS  Google Scholar 

  • Farrar JF, Williams JHH (1990) Control of the rate of respiration in roots. In: Ernes MJ (ed) Compartmentation of plant metabolism in non-photosynthetic tissues. Cambridge University Press, Cambridge, pp 167–188

    Google Scholar 

  • Farrar JF, Minchin PEH, Thorpe MR (1995) Carbon import into barley roots: effects of sugars and relation to cell expansion. J Exp Bot 46:1859–1865

    Article  CAS  Google Scholar 

  • Farrar JF, Pollock CJ, Gallagher J (2000) Sucrose and the integration of metabolism in vascular plants. Plant Sci 154:1–11

    Article  PubMed  CAS  Google Scholar 

  • Fell D (1997) Understanding the control of metabolism. Portland Press, London

    Google Scholar 

  • Ferrari G, Renosto F (1972) Comparative studies on the active transport by excised roots of inbred and hybrid maize. J Agric Sci 79:105–108

    Article  Google Scholar 

  • Griffin GH, Hale MG, Shay FJ (1976) Nature and quantity of sloughed organic matter produced by roots of axenic peanut plants. Soil Biol Biochem 8:29–32

    Article  CAS  Google Scholar 

  • Grime JP (1994) The role of plasticity in exploiting environmental heterogeneity. In: Caldwell M, Pearcy R (eds) Exploitation of environmental heterogeneity in plants. Academic Press, New York, pp 1–19

    Chapter  Google Scholar 

  • Gunn S, Farrar JF (1999) Effects of a 4 °C increase in temperature on partitioning of leaf area and dry mass, root respiration and carbohydrates. Funct Ecol 13:12–20

    Article  Google Scholar 

  • Gunn S, Bailey SJ, Farrar JF (1999a) Partitioning of dry mass and leaf area within plants of three grown at elevated CO2. Funct Ecol 13:3–11

    Article  Google Scholar 

  • Gunn S, Farrar JF, Collis BE, Nason M (1999b) Specific leaf area in barley: individual leaves versus whole plants. New Phytol 145:45–51

    Article  Google Scholar 

  • Haller T, Stolp H (1985) Quantitative estimation of root exudation of maize plants. Plant Soil 86:207–216

    Article  CAS  Google Scholar 

  • Hampp R, Wingler A (1997) The role of mycorrhiza. In: Foyer CH, Quick WP (eds) A molecular approach to primary metabolism in higher plants. Taylor and Francis, London, pp 275–291

    Google Scholar 

  • Heineke D, Kauder F, Frommer W (1999) Application of transgenic plants in understanding responses to atmospheric change. Plant Cell Environ 22:623–628

    Article  CAS  Google Scholar 

  • Hellmann H, Barker L, Funch D, Frommer WB (2000) The regulation of assimilate allocation and transport. Aust J Plant Physiol 27:583–594

    CAS  Google Scholar 

  • Hendry G (1987) The ecological significance of fructan in a native flora. New Phytol 106:201–216

    Article  CAS  Google Scholar 

  • Heulin T, Guckert A, Balandreau J (1987) Stimulation of root exudation of rice seedlings by Azospirillum strains: Carbon budget under gnotobiotic conditions. Biol Fert Soils 4:9–14

    Google Scholar 

  • Ho LC (1978) The regulation of carbon transport and the carbon balance of mature tomato leaves. Ann Bot 42:155–164

    CAS  Google Scholar 

  • Hoffland E, Findenegg GR, Nelemans JA (1989) Solubilization of rock phosphate by rape. 2. Local root exudation of organic acids as a response to P starvation. Plant Soil 113:161–165

    Article  CAS  Google Scholar 

  • Horst WJ, Wagner A, Marschner H (1982) Mucilage protects root meristems form aluminium injury. Z Pflanzenphysiol 105:435–444

    CAS  Google Scholar 

  • Hungria M, Joseph CM, Phillips DA (1991) Rhizobium nod gene inducers exuded naturally from roots of common bean (Phaseolus vulgaris L.). Plant Physiol 97:759–764

    Article  PubMed  CAS  Google Scholar 

  • Hunt R, Warren Wilson J, Hand DW (1990) Integrated analysis of resource capture and utilisation. Ann Bot 65:643–648

    Google Scholar 

  • Iijima M, Griffiths B, Bengough AG (2000) Sloughing of cap cells and carbon exudation from maize seedling roots in compacted sand. New Phytol 145:477–482

    Article  Google Scholar 

  • Johnson JF, Allan DL, Vance CP, Weiblen G (1996) Root carbon dioxide fixation by phosphorus-deficient Lupinus albus: contribution to organic-acid exudation by proteoid roots. Plant Physiol 112:19–30

    Article  PubMed  CAS  Google Scholar 

  • Jones DL, Darrah PR (1993) Re-sorption of organic compounds by roots of Zea mays L. and its consequences in the rhizosphere. II. Experimental and model evidence for simultaneous exudation and re-sorption of compounds. Plant Soil 153:47–59

    Article  CAS  Google Scholar 

  • Jones DL, Darrah PR (1994) Influx and efflux of amino acids from Zea mays L. roots and its implications in the rhizosphere and N nutrition. Plant Soil 163:1–12

    CAS  Google Scholar 

  • Jones DL, Darrah PR (1996) Re-sorption of organic compounds by roots of Zea mays L. and its consequences in the rhizosphere. III. Spatial, kinetic and selectivity characteristics of sugar influx and the factors controlling efflux. Plant Soil 178:153–160

    Article  CAS  Google Scholar 

  • Jones DL, Hodge A (1999) Biodegradation kinetics and sorption reactions of three differently charged amino acids in soil and their effects on plant organic nitrogen availability. Soil Biol Biochem 31:1331–1342

    Article  CAS  Google Scholar 

  • Klein DA, Frederick BA, Redente EF (1989) Fertilizer effects on soil microbial communities and organic matter in the rhizosphere of Sitanion hystrix and Agropyron smithii. Arid Soil Res Rehabil 3:397–404

    Article  Google Scholar 

  • Koch KE (1996) Carbohydrate-modulated gene expression in plants. Annu Rev Plant Physiol Plant Mol Biol 47:509–540

    Article  PubMed  CAS  Google Scholar 

  • Koch KE (1997) Molecular crosstalk and the regulation of C- and N-responsive genes. In: Foyer CH, Quick WP (eds) A molecular approach to primary metabolism in higher plants. Taylor and Francis, London, pp 105–124

    Google Scholar 

  • Kochian LV (1995) Cellular mechanisms of aluminum toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mol Biol 46:237–260

    Article  CAS  Google Scholar 

  • Körner C (1994) Biomass fractionations in plants: a reconsideration of definitions based on plant functions. In: Roy J, Gamier E (eds) A whole plant perspective on carbon-nitrogen interactions. SPB, The Hague, pp 173–185

    Google Scholar 

  • Körner C, Renhardt U (1987) Dry matter partitioning and root length/leaf area ratios in herbaceous perennial plants with diverse altitudinal distribution. Oecologia 74:411–18

    Article  Google Scholar 

  • Korolev A, Tomos AD, Bowtell R, Farrar JF (1999) Spatial and temporal distribution of solutes in the carrot taproot measured at single-cell resolution. J Exp Bot 51:567–577

    Article  Google Scholar 

  • Korolev A, Tomos AD, Farrar JF (2000) The trans-tissue pathway and chemical fate of 14C photoassimilate in carrot taproot. New Phytol 147:299–306

    Article  CAS  Google Scholar 

  • Kraffczyk I, Trolldenier G, Beringer H (1984) Soluble root exudates of maize: Influence of potassium supply and rhizosphere microorganisms. Soil Biol Biochem 16:315–322

    Article  CAS  Google Scholar 

  • Lambers H (1987) Growth, respiration, exudation and symbiotic association: the fate of carbon translocated to roots. In: Gregory PJ, Lake JV, Rose DA (eds) Root development and function. Cambridge University Press, Cambridge, pp 125–146

    Google Scholar 

  • Lang A (1979) A relay mechanism for phloem translocation. Ann Bot 44:141–145

    Google Scholar 

  • Larcher W (1995) Physiological plant ecology. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Lewis DH (1984) Storage carbohydrates in vascular plants. Cambridge University Press, Cambridge

    Google Scholar 

  • Marcelis LFM (1996) Sink strength as a determinant of dry matter partitioning in the whole plant. J Exp Bot 47:1281–1292

    Article  PubMed  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher pants. Academic Press, London

    Google Scholar 

  • Martin JK (1977) Effect of moisture on the release of organic carbon from wheat roots. Soil Biol Biochem 9:303–304

    Article  CAS  Google Scholar 

  • McCully ME (1999) Roots in soil: unearthing the complexities of roots and their rhizos-pheres. Annu Rev Plant Physiol Plant Mol Biol 50:695–718

    Article  PubMed  CAS  Google Scholar 

  • McDougall BM, Rovira AD (1970) Sites of exudation of 14C-labelled compounds from wheat roots. New Phytol 69:999–1003

    Article  Google Scholar 

  • Meharg AA (1994) A critical review of labeling techniques used to quantify rhizosphere carbon-flow. Plant Soil 166:55–62

    Article  CAS  Google Scholar 

  • Milburn JA, Baker DA (1989) Transport of photoassimilates. Longman, London, pp 306–343

    Google Scholar 

  • Minchin PEH, Thorpe MR, Farrar JF (1993) A simple mechanistic model of phloem transport which explains sink priority. J Exp Bot 44:947–955

    Article  Google Scholar 

  • Minchin PEH, Farrar JF, Thorpe MR (1994a) Partitioning of carbon in split root systems of barley: effect of temperature of the root. J Exp Bot 45:1103–1109

    Article  Google Scholar 

  • Minchin PEH, Thorpe MR, Farrar JF (1994b) Short-term control of root: shoot partitioning. J Exp Bot 45:615–622

    Article  Google Scholar 

  • Minchin PEH, Thorpe MR, Farrar JF (2002) Source-sink coupling in young barley plants and control of phloem loading. J Exp Bot 53:1671–1676

    Article  PubMed  CAS  Google Scholar 

  • Moore BD, Cheng SH, Sims D, Seeman JR (1999) The biochemical and molecular basis for photo synthetic acclimation to elevated atmospheric C02 Plant Cell Environ 22:567–582

    Article  CAS  Google Scholar 

  • Morris DA (1996) Hormonal regulation of source-sink relationships. In: Zamski, E, Scahher AA (eds) Photo assimilate distribution in plants and crops. Dekker, New York, pp 441–466

    Google Scholar 

  • Munns R, Cramer GR (1996) Is co-ordination of leaf and root growth mediated by abscisic acid? Plant Soil 185:33–49

    Article  CAS  Google Scholar 

  • Nagel OW, Konings H, Lambers H (2001) Growth rate and biomass partitioning of wild-type and low gibberellin tomato plants. Physiol Plant 111:33–39

    Article  CAS  Google Scholar 

  • Nobel PS (1991) Physio chemical and environmental plant physiology. Academic Press, London

    Google Scholar 

  • Oparka KJ, Duckett CM, Prior DAM, Fisher DB(1994) Real-time imaging of phloem unloading in the root tips of Arabidopsis. Plant J 6:759–766

    Google Scholar 

  • Ourry A, Gordon AJ, Macduff JH (1997) Nitrogen uptake and assimilation in roots and root nodules. In: Foyer CH, Quick WP (eds) A molecular approach to primary metabolism in higher plants. Taylor and Francis, London, pp 237–253

    Google Scholar 

  • Papernik LA, Kochian LV (1997) Possible involvement of Al-induced electrical signals in Al tolerance in wheat. Plant Physiol 115:657–667

    PubMed  CAS  Google Scholar 

  • Patrick JW (1987) Are hormones involved in assimilate transport? In: Hoad GV (ed) Hormone action in plant development. Butterworth, London, pp 175–188

    Google Scholar 

  • Patrick JW (1997) Phloem unloading: sieve element unloading and post-sieve element transport. Annu Rev Plant Physiol Plant Mol Biol 48:191–222

    Article  PubMed  CAS  Google Scholar 

  • Patrick JW, Offler CE (1995) Post-sieve element transport of sucrose in developing seeds. Aust J Plant Physiol 22:681–702

    Article  CAS  Google Scholar 

  • Peters NK, Long SR (1988) Alfalfa root exudates and compounds which promote or inhibit induction of Rhizobium meliloti nodulation genes. Plant Physiol 88:396–400

    Article  PubMed  CAS  Google Scholar 

  • Pritchard J (1998a) Aphid stylectomy reveals an osmotic step between sieve tube and cortical cells in barley roots. J Exp Bot 47:1519–1524

    Article  Google Scholar 

  • Pritchard J (1998b) Control of root growth: cell walls and turgor. In Lambers H, Poorter H, Van Vuuren MMI, (eds) Inherent variation in plant growth. Backhuys, Leiden, pp 21–39

    Google Scholar 

  • Pritchard J, Winch S, Gould N (2000) Phloem water relations and root growth. Aust J Plant Physiol 27:539–548

    CAS  Google Scholar 

  • Reddy MN, Pokojska A, Kampert M, Strzelczyk E (1989) Auxin, gibberelin-like substances and cytokinins in the seed and root exudates of groundnut. Plant Soil 113:283–286

    Article  CAS  Google Scholar 

  • Römheld V (1991) The role of phytosiderophores in the acquisition of iron and other micro nutrients in graminaceous species. An ecological approach. Plant Soil 130:127–134

    Article  Google Scholar 

  • Ryan PR, Delhaize E, Randall PJ (1995) Characterization of Al-stimulated efflux of malate from the apices of Al-tolerant wheat roots. Planta 196:103–110

    Article  CAS  Google Scholar 

  • Saglio PH, Pradet A (1980) Soluble sugars, respiration, and energy charge during ageing of excised maize root tips. Plant Physiol 66:516–519

    Article  PubMed  CAS  Google Scholar 

  • Schonwitz R, Ziegler H (1982) Exudation of water soluble vitamins and some carbohydrates by intact roots of maize seedlings (Zea mays L.) into a mineral nutrient solution. Z Pflanzenphysiol 107:7–14

    Google Scholar 

  • Smeekens S (2000) Sugar-induced signal transduction in plants. Annu Rev Plant Physiol Pantl Mol Biol 51:49–82

    Article  CAS  Google Scholar 

  • Smucker AJM, Erickson AE (1987) Anaerobic stimulation of root exudates and disease in peas. Plant Soil 99:423–433

    Article  CAS  Google Scholar 

  • Soldai T, Nissen P (1978) Multiphasic uptake of amino acids by barley roots. Physiol Plant 43:181–188

    Article  Google Scholar 

  • Stitt M (1996) Metabolic regulation of photosynthesis In Baker NR (ed) Photosynthesis and the environment. Kluwer, Dordrecht, pp 151–190

    Google Scholar 

  • Svenningsson H, Sundin P, Lljenberg C (1990) Lipids, carbohydrates and amino acids exuded from the axenic roots of rape seedlings exposed to water deficit stress. Plant Cell Environ 13:155–162

    Article  CAS  Google Scholar 

  • Sweetlove LJ, Kossmann J, Riesmeier JW, Trethewey RN, Hill SA (1998) The control of source to sink carbon flux during tuber development in potato. Plant J 15:697–706

    Article  CAS  Google Scholar 

  • Thomas TH. (1986) Hormonal control of assimilate movement and compartmentation. In: Bopp MP (ed) Plant growth substances 1985. Springer, Berlin Heidelberg New York, pp 350–359

    Google Scholar 

  • Thornley JHM (1977) Rootshoot interactions. In: Jennings DH (ed) Integration of activity in the higher plant. University of Cambridge Press, Cambridge, pp 367–389

    Google Scholar 

  • Tilman DT (1988) Plant strategies and the dynamics and structure of plant communities. Princeton, New Jersey

    Google Scholar 

  • Tomos AD, Pritchard J (1994) Biophysical and biochemical control of cell expansion in roots and leaves. J Exp Bot 45:1721–1731

    CAS  Google Scholar 

  • Tomos AD, Korolev A, Farrar J, Nicolay K, Bowtell R, Kockenberger W (2000) Water and solute relations of the carrot cambium studied at single-cell resolution. In: Savage R, Barnett J, Napier R (eds) Cell and molecular biology of wood formation. Bios Scientific Publishers, Oxford, pp 101–112

    Google Scholar 

  • van Bel AJE (1993) Strategies of phloem loading. Annu Rev Plant Physiol Plant Mol Biol 44:253–281

    Article  Google Scholar 

  • van Bel AJE, Knoblauch M (2000) Sieve element and companion cell. Aust J Plant Physiol 27:477–487

    Google Scholar 

  • Vancura V, Stotsky G (1976) Gaseous and volatile exudates from germinating seeds and seedlings. Can J Bot 54:518–532

    Article  CAS  Google Scholar 

  • Warmbrodt RD (1987) Solute concentration in the phloem and associated vascular and ground tissue of the roots of Hordeum vulgare. In: Cronshaw J, Lucas WJ, Giaquinta RT (eds) Phloem transport. Liss, New York, pp 435–444

    Google Scholar 

  • Whipps JM (1990) Carbon economy. In: Lynch JM (ed) The rhizosphere. Wiley Inter-science, New York, pp 59–98

    Google Scholar 

  • Williams JHH, Farrar JF (1990) Control of barley root respiration. Physiol Plant 79:259–266

    Article  CAS  Google Scholar 

  • Wilson JB (1989) A review of evidence on the control of shootroot ratio, in relation to models. Ann Bot 61:433–449

    Google Scholar 

  • Wyse RE, Zamski E, Tomos AD (1986) Turgor regulation of sucrose transport in sugar beet taproot tissue. Plant Physiol 81:478–481

    Article  PubMed  CAS  Google Scholar 

  • Xia JH, Saglio PH (1988) Characterisation of the hexose transport system in maize root tips. Plant Physiol 88:1015–1020

    Article  PubMed  CAS  Google Scholar 

  • Xia JH, Saglio PH (1992) Lactic acid efflux as a mechanism of hypoxic acclimation of maize root tips to anoxia. Plant Physiol 100:40–46

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Forde BG (1998) An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279:407–409

    Article  PubMed  CAS  Google Scholar 

  • Zulu JN, Farrar JF, Whitbread R (1991) Effects of phosphate supply on wheat seedlings infected with powdery mildew: carbohydrate metabolism of first leaves. New Phytol 118:553–558

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Farrar, J.F., Jones, D.L. (2003). The Control of Carbon Acquisition by and Growth of Roots. In: de Kroon, H., Visser, E.J.W. (eds) Root Ecology. Ecological Studies, vol 168. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09784-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09784-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05520-1

  • Online ISBN: 978-3-662-09784-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics