Skip to main content

Root-Animal Interactions

  • Chapter
Root Ecology

Part of the book series: Ecological Studies ((ECOLSTUD,volume 168))

Abstract

In view of the relative inaccessibility and invisibility of belowground organisms, and the prevalence of invertebrates among root herbivores, it is not surprising that understanding of belowground ecological processes has proceeded at a much slower rate than aboveground studies. When Cragg (1961) was writing about soil animals, almost all of the information available to him was descriptive, or, if quantitative, was unable to go much beyond population counts and biomass estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen DC (1987) Below-ground herbivory in natural communities: A review emphasizing fossorial animals. Q Rev Biol 62:261–286

    Article  Google Scholar 

  • Bach CE (1998) Interactive effects of herbivory and sand burial on growth of a tropical dune plant, Ipomoea pes-caprae. Ecol Entomol 23:238–245

    Article  Google Scholar 

  • Barber DA, Martin JK (1976) The release of organic substances by cereal roots into soil. New Phytol 76:69–80

    Article  CAS  Google Scholar 

  • Bardgett RD, Wardle DA, Yeates GW (1998) Linking above-ground and below-ground interactions: how plant responses to foliar herbivory influence soil organisms. Soil Biol Biochem 30:1867–1878

    Article  CAS  Google Scholar 

  • Bayliss JP, Cherrett JM Ford JB (1986) A survey of the invertebrates feeding on living clover roots (Trifolium rep ens L.) using 32P as a radiotracer. Pedobiologia 29:201–208

    Google Scholar 

  • Bentley S, Whittaker JB (1979) Effects of grazing by a chrysomelid beetle, Gastrophysa viridulciy on competition between Rumex obtusifolius and Rumex crispus. J Ecol 67:79–90

    Article  Google Scholar 

  • Bortolus A, Iribarne OO, Martinez MM (1998) Relationship between water fowl and the seagrass Ruppia maritima in a southwestern Atlantic coastal lagoon. Estuaries 21:718–717

    Article  Google Scholar 

  • Briske DD, Boulton TW, Wang Z (1996) Contribution of flexible allocation priorities to herb ivory tolerance in C-4 perennial grasses: an evaluation with 13C labeling. Oecologia 105:151–159

    Google Scholar 

  • Briske DD, Richards JH (1994) Physiological responses of individual plants to grazing: current status and ecological significance. In: Vavra M, Laycock WA, Pieper RD (eds) Ecological implications of livestock herbivory in the west. Soc Range Manage, Denver, pp 147–176

    Google Scholar 

  • Brown VK (1990) Insect herbivory and its effect on plant succession. In: Burdon JJ, Leather SR (eds) Pests, pathogens and plant communities. Blackwell, Oxford

    Google Scholar 

  • Brown VK, Gange AC (1990) Insect herbivory below ground. Adv Ecol Res 20:1–58

    Article  Google Scholar 

  • Brown MW, Glenn DM, Wisniewski ME (1991) Functional and anatomical disruption of apple roots by the woolly apple aphid (Homoptera: Aphididae). J Econ Entomol 84:1823–1826

    Google Scholar 

  • Brown MW, Schmitt JJ, Ranger S, Hogmire HW (1995) Yield reduction in apple by edaphic woolly apple aphid (Homoptera: Aphididae) populations. J Econ Entomol 88:127–133

    Google Scholar 

  • Coffin DP, Laycock WA, Lauenroth WK (1998) Disturbance intensity and above- and below-ground herbivory effects on long-term (14 y) recovery of semi-arid grassland. Plant Ecol 139:221–233

    Article  Google Scholar 

  • Collantes HG, Gianoli E, Niemeyer HM (1998) Changes in growth and chemical defences upon defoliation in maize. Phyto chemistry 49:1921–1923

    CAS  Google Scholar 

  • Collins CM, Rosado RG, Leather SR (2001) The impact of the aphids Tuberolachnus salignus and Pteocomma Salicis on willow trees. Ann Appl Biol 138:133–140

    Article  Google Scholar 

  • Cook PA (1996) Effects of the spruce root aphid, Pachypappa vesicali, on the growth and physiology of Sitka spruce seedlings. PhD Thesis, Lancaster University

    Google Scholar 

  • Coulson JC, Whittaker JB (1978) Ecology of moorland animals. In: Heal OW, Perkins DF (eds) Production ecology of British moors and montane grasslands. Ecological Studies 27. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Cragg JB (1961) Some aspects of the ecology of moorland animals. J Ecol 49:477–506

    Article  Google Scholar 

  • Crutchfield BA, Potter DA (1994) Preferences of Japanese beetle and southern masked chafer (Coleoptera: Scarabaeidae) grubs among cool-season turfgrasses. J Entomol Sci 29:398–406

    Google Scholar 

  • Denton CS, Bardgett RD, Cook R (1996) Nematode-microbial interactions in the rhizos-phere of grassland plants. Abstracts of the Annual Biotechnology and Biological Sciences Research Council Plant Microbe Interactions Initiative Meeting, March 1996, University of Manchester

    Google Scholar 

  • Denton CS, Bardgett RD, Cook R, Hobbs PJ (1999) Low amounts of root herbivory positively influence the rhizosphere microbial community in a temperate grassland soil. Soil Biol Biochem 31:155–165

    Article  CAS  Google Scholar 

  • Detling JK, Winn DT, Proctor-Gregg C, Painter KL (1980) Effects of simulated grazing by below-ground herbivores on growth, CO2 exchange, and carbon allocation patterns of Bouteloua gracilis. J Appl Ecol 17:771–778

    Article  Google Scholar 

  • Dicke M, Dijkman H (2001) Within-plant circulation of systemic elicitor of induced defence and release from roots of elicitor that affects neighbouring plants. Biochem Syst Ecol 29:1075–1087

    Article  CAS  Google Scholar 

  • Dintenfass LP, Brown GC (1988) Quantifying effects of clover root curculio (Coleoptera: Curculionidae) larval feeding on biomass and root reserves of alfalfa. J Econ Entomol 81:641–648

    Google Scholar 

  • Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL (2000). Building roots in a changing environment: implications for root longevity. New Phytol 147:33–42

    Article  CAS  Google Scholar 

  • Engels RK, Nichols JT, Dodd JL, Brummer JE (1998) Root and shoot responses of sand bluestem to defoliation. J Range Manage 51:42–46

    Article  Google Scholar 

  • Ford MA, Grace JB (1998) Effects of vertebrate herbivores on soil processes, plant bio-mass, litter accumulation and soil elevation changes in a coastal marsh. J Ecol 86:974–982

    Article  Google Scholar 

  • Freckman DW, Barker KR, Coleman DC, Acras M, Dyer MI, Strain BR, McNaughton SJ (1991) The use of the 11C technique to measure plant responses to herbivorous soil nematodes. Funct Ecol 5:810–818

    Article  Google Scholar 

  • French N (1969) Assessment of leather-jacket damage to grassland and economic aspects of control. Proceedings of the 5th British Insecticide and Fungicide Conference, vol 2, pp 511–521

    Google Scholar 

  • Gange AC (2001) Species-specific responses of a root- and shoot-feeding insect to arbus-cular mycorrhizal colonization of its host plant. New Phytol 150:611–618

    Article  Google Scholar 

  • Gange AC, Brown VK (1989) Effects of root herbivory by an insect on a foliar-feeding species, mediated through changes in the host plant. Oecologia 81:38–42

    Article  Google Scholar 

  • Gunn A, Cherrett JM (1993) The exploitation of food resources by soil meso- and macro-invertebrates. Pedobiologia 37:303–320

    Google Scholar 

  • Hatcher PE (1996) The effect of insect-fungus interactions on the autumn growth and over-wintering of Rumex crispus and R. obtusifolius seedlings. J Ecol 84:101–109

    Article  Google Scholar 

  • Hendrick RL, Pregitzer KS (1992) The demography of fine roots in a northern hardwood forest. Ecology 73:1094–1104

    Article  Google Scholar 

  • Hendrick RL, Pregitzer KS (1993) Patterns of fine root mortality in two sugar maple forests. Nature 361:59–61

    Article  Google Scholar 

  • Hibbard BF, Bjostad LB (1988) Behavioral responses of western corn rootworm larvae to volatile semiochemicals from corn seedlings. J Chem Ecol 14:1523–1539

    Article  CAS  Google Scholar 

  • Hidaka M (1973) Effect of cutting on the total non-structural carbohydrates (TNC) contents in the roots and crowns of Rumex obtusifolius L. J JPN Grassi Sci 19:313–317 (in Japanese with English summary)

    Google Scholar 

  • Holland JN, Cheng WX, Crossley DA (1996) Herbivore-induced changes in plant carbon allocation: assessment of below-ground C fluxes using 14C. Oecologia 107:87–94

    Article  Google Scholar 

  • Ingham RE, Detling JK (1986) Effects of defoliation and nematode consumption on growth and leaf gas exchange in Bouteloua curtipendula. Oikos 46:23–28

    Article  Google Scholar 

  • Jameson DA (1963) Responses of individual plants to harvesting. Bot Rev 29:532–594

    Article  CAS  Google Scholar 

  • Kilham K (1994) Soil ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Kosola KR, Eissenstat DM, Graham JH (1995) Root demography of mature citrus trees: the influence of Phytophthora nicotianae. Plant Soil 171:283–288

    Article  CAS  Google Scholar 

  • Kosola KR, Dickman DI, Paul EA et al. (2001) Repeated insect defoliation effects on growth, nitrogen acquisition, carbohydrates, and root demography of poplars. Oecologia 129:65–74

    Article  Google Scholar 

  • Lawton JH, Strong DR (1981) Community patterns and competition in folivorous insects. Am Nat 118:317–338

    Article  Google Scholar 

  • Llewellyn M (1982) The energy economy of fluid-feeding herbivorous insects. In: Visser JH, Minks AK (eds) Proceedings of the 5th International Symposium on Insect-Plant Relationships , Wageningen, Netherlands, pp 243–252

    Google Scholar 

  • Loveys BR, Bird AF (1973) The influence of nematodes on photosynthesis in tomato plants. Physiol Plant Path 3:525–52

    Article  CAS  Google Scholar 

  • Macfadyen A (1952) The small arthropods of a Mollinia fen at Cothill. J Anim Ecol 21:87–117

    Article  Google Scholar 

  • Maron JL (1998) Insect herbivory above- and belowground: Individual and joint effects on plant fitness. Ecology 79:1281–1293

    Article  Google Scholar 

  • Masters GJ (1995) The effect of herbivore density on host plant mediated interactions between two insects. Ecol Res 10:125–133

    Article  Google Scholar 

  • Masters GJ, Brown VK (1996) Host-plant mediated interactions between spatially separated herbivores: effects on community structure. In: Gange AC, Brown VK (eds) Mul-titrophic interactions in terrestrial ecosystems. 36th Symposium of the British Ecological Society. Blackwell Science, Oxford

    Google Scholar 

  • Masters GJ, Brown VK, Gange AC (1993) Plant mediated interactions between above- and below-ground insect herbivores. Oikos 66:148–151

    Article  Google Scholar 

  • Masters GJ, Jones TH, Rogers M (2001) Host-plant mediated effects of root herbivory on insect seed predators and their parasitoids. Oecologia 127:246–250

    Article  Google Scholar 

  • Matter SF (2001) Effects of above and below ground herbivory by Tetraopes tetraoph-thalmus (Coleoptera: Cerambycidae) on the growth and reproduction of Asclepias syriaca (Asclepidacae). Env Entomol 30:333–338

    Article  Google Scholar 

  • McEvoy PB, Rudd NT, Cox CS, Huso M (1993) Disturbance, competition, and herbivory effects on ragwort Senecio jacobaeae populations. Ecol Monogr 63:55–75

    Article  Google Scholar 

  • McNaughton SJ, Banyikua FF, McNaughton MM (1998) Root biomass and productivity in a grazing ecosystem: The Serengeti. Ecology 79:587–592

    Article  Google Scholar 

  • Moran NA, Whitham TG (1990). Interspecific competition between root-feeding and leaf galling aphids mediated by host plant resistance. Ecology 71:1050–1058

    Article  Google Scholar 

  • Morón-Rios A, Dirzo R, Jaramillo VJ (1997) Defoliation and below-ground herbivory in the grass Muhlenbergia quadridentata: effects on plant performance and on the root-feeder Phyllophaga sp. (Coleoptera, Melolonthidae). Oecologia 110:237–241

    Article  Google Scholar 

  • Mortimer S, Van der Putten WH, Brown VK (1999) Insect and nematode herbivory below-ground: interactions and role in vegetation development. In: Olff H, Brown VK, Drent RH (eds) Herbivores: between plants and predators. Blackwell, Oxford, pp 205–238

    Google Scholar 

  • Müller H (1989) Structural analysis of the phytophagous insect guilds associated with the roots of Centaura maculosa Lam., C. diffusa Lam., and C. vallesiaca Jordan in Europe. Oecologia 78:41–52

    Article  Google Scholar 

  • Müller-Shärer H (1991) The impact of root herbivory as a function of plant density and competition — survival, growth and fecundity of Centaurea maculosa in field plots. J Appl Ecol 28:759–766

    Article  Google Scholar 

  • Murray PJ, Clements RO (1998) Transfer of nitrogen between clover and wheat: effect of root herbivory. Eur J Soil Biol 34:25–30

    Article  Google Scholar 

  • Murray PJ, Hatch DJ (1994) Sitona weevils (Coleoptera; Curculionidae) as agents for rapid transfer of nitrogen from white clover (Trifolium repens L.) to perennial rye grass (Lolium perenne L.). Ann Appl Biol 125:29–33

    Google Scholar 

  • Murray PJ, Hatch DJ, Cliquet JB (1996) Impact of insect root herbivory on the growth and nitrogen and carbon contents of white clover (Trifolium repens) seedlings. Can J Bot 74:1591–1595

    Article  Google Scholar 

  • Notzold R, Blossey B, Newton E (1998) The influence of below ground herbivory and plant competition on growth and biomass allocation of purple loosestrife. Oecologia 113:82–93 Piearce TG (1978) Gut contents of some lumbricid earthworms. Pedobiologia 18:153–157

    Google Scholar 

  • Philipson JJ, Coutts MP (1979) The induction of root dormancy in Picea sitchensis (Bong.) Carr. by abscisic acid. J Exp Bot 30:371–380

    Article  CAS  Google Scholar 

  • Quinn MA, Hall MH (1992) Compensatory response of a legume root-nodule system to nodule herbivory by Sitona hispidulus. Entomol Exp Appl 64:167–176

    Article  Google Scholar 

  • Rabe E (1990) Stress physiology: the functional significance of the accumulation of nitrogen-containing compounds. J Hortic Sci 65:231–243

    CAS  Google Scholar 

  • Ramsell J, Malloch AJC, Whittaker JB (1993) When grazed by Tipula paludosa, Lolium perenne is a stronger competitor of Rumex obtusifolius. J Ecol 81:777–786

    Article  Google Scholar 

  • Ridsdill-Smith TJ (1977) Effects of root-feeding by Scarabaeid larvae on growth of perennial ryegrass plants. J Appl Ecol 14:73–80

    Article  Google Scholar 

  • Ridsdill-Smith TJ, Roberts RJ (1976) Insect density effects in root feeding by larvae of Sericeothis nigrolineata (Coleoptera: Scarabaeidae). J Appl Ecol 13:423–428

    Article  Google Scholar 

  • Ruess RW, Hendrick RL, Bryant JP (1998) Regulation of fine root dynamics by mammalian browsers in early successional Alaskan taiga forests. Ecology 79:2706–2720

    Article  Google Scholar 

  • Ryle GJA, Powell CE (1975) Defoliation and regrowth in the graminaceous plant: the role of current assimilate. Ann Bot 39:297–310

    Google Scholar 

  • Salt DT, Fenwick P, Whittaker JB (1996a) Interspecific herbivore interactions in a high CO2 environment: root and shoot aphids feeding on Cardamine. Oikos 77:326–330

    Article  Google Scholar 

  • Salt DT, Major E, Whittaker JB (1996b) Population dynamics of root aphids feeding on Sitka spruce in two commercial plantations. Pedobiologia 40:1–11

    Google Scholar 

  • Scott, JA, French NR, Leethan JW (1979) Patterns of consumption in grasslands. In: French NR (ed) Perspectives in grassland ecology. Ecological Studies 32. Springer, Berlin Heidelberg New York, pp 89–105

    Chapter  Google Scholar 

  • Sheppard AW, Aeschlimann J-P, Sagliocco J-L, Vitou J (1995) Below-ground herbivory in Carduus nutans (Asteraceae) and the potential for biological control. Biocontrol Sci Technol 5:261–270

    Article  Google Scholar 

  • Sibma L, Kort J, de Wit CT (1964) Experiments on competition as a means of detecting possible damage by nematodes. Jaarboek, Instituut voor biologischen scheikundig onderzoek van Landbouwgewassen 1964:119–124

    Google Scholar 

  • Smith JP, Schowalter TD (2001) Aphid-induced reduction of shoot and root growth in Douglas-fir seedlings. Ecol Entomol 26:411–416

    Article  CAS  Google Scholar 

  • Stanton NL (1988) The underground in grasslands. Annu Rev Ecol Syst 19:573–589

    Article  Google Scholar 

  • Steinger T, Müller-Schärer H (1992) Physiological and growth responses of Centaurea maculosa (Asteraceae) to root herbivory under varying levels of interspecific plant competition and soil nitrogen availability. Oecologia 91:141–149

    Google Scholar 

  • Strong DR, Maron JL, Connors PG, Whipple A, Harrison S, Jefferies RL (1995) High mortality, fluctuation in numbers, and heavy subterranean insect herbivory in bush lupine, Lupinus arboreus. Oecologia 104:85–92

    Article  Google Scholar 

  • Van Toi RWHM, Van der Sommen ATC, Boff MIC, et al. (2001) Plants protect their roots by alerting the enemies of grubs. Ecol Lett 4:292–294

    Article  Google Scholar 

  • Verschoor BC (2001) Nematode-plant interactions in grasslands under restoration management. PhD thesis, Wageningen University, The Netherlands

    Google Scholar 

  • Vranjic JA, Ash JE (1997) Scale insects consistently affect roots more than shoots: the impact of infestation size on growth of eucalypt seedlings. J Ecol 85:143–149

    Article  Google Scholar 

  • Wallace HR (1974) The influence of root-knot nematode, Meloidogynejavanica, on photosynthesis and nutrient demand by roots of tomato plants. Nematologica 17:154–166

    Article  Google Scholar 

  • Wardle DA, Barker GM (1997) Competition and herbivory in establishing grassland communities: implications for plant biomass, species diversity and soil microbial activity. Oikos 80:470–480

    Article  Google Scholar 

  • Whittaker JB (1979) Invertebrate grazing, competition and plant dynamics. In: Anderson RM, Turner BD, Taylor LR (eds) Population dynamics. Symposium of the British Ecological Society 20:207–222. Blackwell, Oxford

    Google Scholar 

  • Whittaker JB (1982) The effect of grazing by a chrysomelid beetle, Gastrophysa viridula> on growth and survival of Rumex crispus on a shingle bank. J Ecol 70:291–296

    Article  Google Scholar 

  • Yeates GW, Bardgett RD, Cook R, Hobbs PJ, Bowling PJ, Potter JF (1997) Faunal and microbial diversity in three Welsh grassland soils under conventional and organic management regimes. J Appl Ecol 34:453–70

    Article  Google Scholar 

  • Yeates GW, Saggar S, Denton CS, Mercer CF (1998) Impact of clover cyst nematode (Het-erodera trifolii) infection on soil microbial activity in the rhizosphere of white clover (Trifolium repens) — a pulse labelling experiment. Nematologica 44:81–90

    Article  Google Scholar 

  • Yeates GW, Bardgett RD, Mercer CF, Saggar S, Feltham CW (1999) The impact of feeding by five nematodes on 14C distribution in soil microbial biomass and nematodes: initial observations. N Z J Zool 26:87

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Whittaker, J.B. (2003). Root-Animal Interactions. In: de Kroon, H., Visser, E.J.W. (eds) Root Ecology. Ecological Studies, vol 168. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09784-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09784-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05520-1

  • Online ISBN: 978-3-662-09784-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics