Skip to main content
Book cover

Root Ecology pp 257–295Cite as

Mycorrhizas

  • Chapter

Part of the book series: Ecological Studies ((ECOLSTUD,volume 168))

Abstract

Mycorrhizas (‘fungus-roots’: also called mycorrhizae) of one sort or another are a normal part of root function and ecology for the vast majority of terrestrial plants. Because the formation of mycorrhizas can affect the rates of growth and eventually reproduction of plants they are a potential selection factor that can influence the composition of plant communities and hence, presumably, the evolutionary success of individual plant species. Fossil mycorrhizas occur in Devonian rocks 400 million years old, so present-day myc-orrhizal symbioses are the result of a very long period of coevolution between plants and soil fungi.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen MF (ed) (1992) Mycorrhizal functioning: an integrative plant-fungal process. Chapman and Hall, London

    Google Scholar 

  • Allen EB, Allen MF, Helm DJ, Trappe JM, Molina R, Rincon E (1995) Patterns and regulation of mycorrhizal plant and fungal diversity. Plant Soil 170:47–62

    Article  CAS  Google Scholar 

  • Allen MF, Egerton-Warberton LM, Allen EB, Karen O (1999) Mycorrhizae in Adenostoma fasculatum Hook. & Arn.: a combination of unusual ecto- and endo-forms. Mycor-rhiza 8:225–228

    Article  Google Scholar 

  • Andrade G, Mihara KL, Linderman RG, Bethlenfalvay GJ (1997) Bacteria from the rhi-zosphere and hyphosphere soils of different arbuscular mycorrhizal fungi. Plant Soil 192:71–79

    Article  CAS  Google Scholar 

  • Arriola L, Niemira B, Safir GR (1997) Border cells and arbuscular mycorrhizae in four Amaranthaceae species. Phytopathology 87:1240–1242

    Article  PubMed  CAS  Google Scholar 

  • Ashford AE, Allaway WG (1982) A sheathing mycorrhiza on Pisonia grandis R. Br. (Nyc-taginaceae) with development of transfer cells rather than a Hartig net. New Phytol 90:511–519

    Article  Google Scholar 

  • Auge RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Azcón-Aguilar C, Barea JM (1992) Interactions between mycorrhizal fungi and other rhizosphere microorganisms. In: Allen MF (ed) Mycorrhizal functioning: an integrative plant-fungal process. Chapman and Hall, London, pp 163–198

    Google Scholar 

  • Bago B, Pfeffer PE, Zipfel W, Lammers P, Shachar-Hill Y (2002) Tracking metabolism and imaging transport in arbuscular mycorrhizal fungi. Plant Soil 244:189–197

    Article  CAS  Google Scholar 

  • Barker SJ, Tagu D (2000) The roles of auxins and cytokinins in mycorrhizal symbioses. J Plant Growth Regul 19:144–154

    PubMed  CAS  Google Scholar 

  • Bergelson JM, Crawley MJ (1988) Mycorrhizal infection and plant species diversity. Nature 334:202

    Article  Google Scholar 

  • Bever JD (2002) Host-specificity of AM fungal population growth rates can generate feedback on plant growth. Plant Soil 244:281–290

    Article  CAS  Google Scholar 

  • Bianciotto V, Bandi C, Minerdi D, Sironi M, Tichy HV, Bonfante P (1996) An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria. Appl Environ Microbiol 62:3005–3010

    PubMed  CAS  Google Scholar 

  • Boddington CL, Dodd JC (1999) Evidence that differences in phosphate metabolism in mycorrhizas formed by species of Glomus and Gigaspora might be related to their life-cycle strategies. New Phytol 142:531–538

    Article  Google Scholar 

  • Bowen GD, Theodorou C (1979) Interactions between bacteria and ectomycorrhizal fungi. Soil Biol Biochem 11:119–126

    Article  Google Scholar 

  • Brundrett M (1991) Mycorrhizas in natural ecosystems. Adv Ecol Res 21:171–313

    Article  Google Scholar 

  • Brundrett M, Kendrick B (1990a) The roots and mycorrhizas of herbaceous woodland plants: I. Quantitative aspects of morphology. New Phytol 114:457–468

    Article  Google Scholar 

  • Brundrett M, Kendrick B (1990b) The roots and mycorrhizas of herbaceous woodland plants: IL Structural aspects of morphology. New Phytol 114:469–480

    Article  Google Scholar 

  • Bruns TD, Gardes M (1993) Molecular tools for the identification of ectomycorrhizal fungi-taxon-specific oligonucleotide probes for suilloid fungi. Mol Ecol 2:233–242

    Article  PubMed  CAS  Google Scholar 

  • Bryla DR, Koide RT (1990) Role of mycorrhizal infection in the growth and reproduction of wild vs. cultivated plants. II. Eight wild accessions and two cultivars of Lycopersicon esculentum Mill. Oecologia 84:82–92

    Article  Google Scholar 

  • Burgess T, Dell B, Malajczuk N (1994) Variation in mycorrhizal development and growth stimulation by 20 Pisolithus isolates inoculated on Eucalyptus grandis W. Hill ex Maiden. New Phytol 127:731–739

    Article  Google Scholar 

  • Cavagnaro TR, Gao L-L, Smith FA, Smith SE (2001) Morphology of arbuscular mycorrhizas is influenced by fungal identity. New Phytol 151:469–475

    Article  Google Scholar 

  • Chalot M, Brun A (1998) Physiology of organic nitrogen acquisition by ectomycorrhzal fungi and ectomycorrhizas. FEMS Microbiol Rev 22:21–44

    Article  PubMed  CAS  Google Scholar 

  • Chapin FS III (1980) The mineral nutrition of wild plants. Annu Rev Ecol Syst 11:233–260

    Article  CAS  Google Scholar 

  • Clarkson DT (1985) Factors affecting mineral nutrient acquisition by plants. Annu Rev Plant Physiol 36:77–115

    Article  CAS  Google Scholar 

  • Clayton JS, Bagyaraj DJ (1984) Vesicular-arbuscular mycorrhizas in submerged aquatic plants in New Zealand. Aquat Bot 19:251–262

    Article  Google Scholar 

  • Colpaert JV, Vandenkoornhuyse P, Adriaensen K, Vangronsveld J (2001) Genetic variation and heavy metal tolerance in the ectomycorrhizal basidiomycete Suillus luteus. New Phytol 157:367–379

    Google Scholar 

  • Dahlberg A (2001) Community ecology of ectomycorrhizal fungi: an advancing interdisciplinary field. New Phytol 150:555–562.

    Article  Google Scholar 

  • Dexheimer J, Pargney JC (1991) Comparative anatomy of the host-fungus interface in mycorrhizas. Experientia 47:312–321

    Article  Google Scholar 

  • Dickson S (1999) Phosphate transfer efficiency of two arbuscular mycorrhizal fungi. PhD Thesis, University of Adelaide, Australia

    Google Scholar 

  • Dighton J (1991) Aquisition of nutrients from the organic resources by mycorrhizal autotrophic plants. Experientia 47:362–369

    Article  Google Scholar 

  • Duchesne LC (1994) Role of ectomycorrhizal fungi in biocontrol. In: Pfleger FL, Linder-man RG (eds) Mycorrhizae and plant health. APS Press, St Paul, Minnesota, pp 27–45

    Google Scholar 

  • Duckett JG, Read DJ (1995) Ericoid mycorrhizas and rhizoid-ascomycete associations in liverworts share the same mycobiont: isolation of the partners and resynthesis of the associations in vitro. New Phytol 129:439–447

    Article  Google Scholar 

  • Duponnois R (1992) Les bactéries auxiliaires de la mycorhization du Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) par Laccarla laccata souche S238. These de l’Université de Nancy I, France

    Google Scholar 

  • Duponnois R, Garbaye J (1990) Some mechanisms involved in growth stimulation of ectomycorhizal fungi by bacteria. Can J Bot 68:2148–2152

    Article  Google Scholar 

  • Dupponois R, Garbaye J, Bouchard D, Churin J-L (1993) The fungus-specificity of myc-orrhiza helper bacteria (MHBs) used as an alternative to soil fumigation for ectomycorrhizal inoculation of bare-root Douglas fir planting stocks with Laccarla laccata. Plant Soil 157:257–262

    Article  Google Scholar 

  • Eom A-H, Hartnett DC, Wilson GT (2000) Host plant species effects on arbuscular mycorrhizal fungal communities in tallgrass prairies. Oecologia 122:435–444

    Article  Google Scholar 

  • Erland S, Finlay R (1992) Effects of temperature and incubation time on the ability of three ectomycorrhizal fungi to colonize Plnus sylvestris roots. Mycol Res 96:270–272

    Article  Google Scholar 

  • Facelli E, Pacelli J, McLaughlin MJ, Smith SE (1999) Interactive effects of arbuscular mycorrhizal symbiosis, intraspecific competition and resource availability using Trifolium subterraneum L. cv. Mt Barker. New Phytol 141:535–547

    Article  Google Scholar 

  • Finlay RD (1989) Functional aspects of phosphorus uptake and carbon translocation in incompatible ectomycorrhizal associations between Pinus sylvestris and Suillus gre-villei and Boletus cavipes. New Phytol 112:185–192

    Article  CAS  Google Scholar 

  • Finlay RD, Read DJ (1986a) The structure and function of the vegetative mycelium of ectomycorrhizal plants. I. Translocation of 14C-labelled carbon between plants interconnected by a common mycelium. New Phytol 103:143–156

    Article  Google Scholar 

  • Finlay RD, Read DJ (1986b) The structure and function of the vegetative mycelium of ectomycorrhizal plants. II. The uptake and distribution of phosphorus by mycelial interconnecting host plants. New Phytol 103:157–165

    Article  Google Scholar 

  • Finlay R, Söderström B (1992) Mycorrhiza and carbon flow to the soil. In: Allen MF (ed) Mycorrhizal functioning: an integrative plant-fungal process. Chapman and Hall, New York, pp 134–160

    Google Scholar 

  • Fitter AH (1991) Costs and benefits of mycorrhizas: implications for functioning under natural conditions. Experientia 47:350–355

    Article  Google Scholar 

  • Fitter AH, Heinemeyer A, Staddon PL (2000) The impact of elevated C02 and global climate change on arbuscular mycorrhizas: a myco centric approach. New Phytol 147: 179–187

    Article  CAS  Google Scholar 

  • Foster RC, Marks GC (1966) The fine structure of the mycorrhizas of Pinus radiata D. Don. Aust J Biol Sci 19:1027–1038

    Google Scholar 

  • Francis R, Read DJ (1984) Direct transfer of carbon between plants connected by vesic-ular-arbuscular mycorrhizal mycelium. Nature 307:53–56

    Article  CAS  Google Scholar 

  • Franken P, Requena N (2001) Analysis of gene expression in arbuscular mycorrhizas: new approaches and challenges. New Phytol 150:517–523

    Article  CAS  Google Scholar 

  • Gallaud I (1905) Études sur les mycorrhizes endotrophes. Rév Gen Bot 17:5–48,66–83, 123–136, 223–239, 313–325 425,479–500

    Google Scholar 

  • Garbaye J (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210

    Article  Google Scholar 

  • Gardes M, Dahlberg A (1996) Mycorrhizal diversity in arctic and alpine tundra: an open question. New Phytol 133:147–157

    Article  Google Scholar 

  • Graham JH (2001) What do root pathogens see in mycorrhizas? New Phytol 149:357–359

    Article  Google Scholar 

  • Graves JD, Watkins NK, Fitter AH, Robinson D, Scrimgeour C (1997) Intraspecific transfer of carbon between plants linked by a common mycorrhizal network. Plant Soil 192:153–159

    Article  CAS  Google Scholar 

  • Griffiths RP, Caldwell BA, Cromack KC, Morita RY (1990) Douglas-fir forest soils colonized by ectomycorrhizal mats. I. Seasonal variation in nitrogen chemistry and nitrogen cycle transformation rates. Can J Forest Res 20:211–218

    Article  Google Scholar 

  • Grime JP, Mackey JML, Hillier SH, Read DJ (1987) Floristic diversity in a model system using experimental microcosms. Nature 328:420–422

    Article  Google Scholar 

  • Hamel C, Furlan V, Smith DL (1991) N2-fixation and transfer in a field grown mycorrhizal corn and soybean intercrop. Plant Soil 133:177–185

    Article  CAS  Google Scholar 

  • Hartnett DC, Wilson GWT (1999) Mycorrhizae influence plant community structure and diversity in tallgrass prairie. Ecology 80:1187–1195

    Article  Google Scholar 

  • Hartnett DC, Wilson GWT (2002) The role of mycorrhizas in plant community structure and dynamics. Plant Soil 244:319–331

    Article  CAS  Google Scholar 

  • Hartnett DC, Hetrick BAD, Wilson GWT, Gibson DJ (1993) Mycorrhizal influence on intra- and interspecific neighbour interactions among co-occurring prairie grasses. J Ecol 81:787–795

    Article  Google Scholar 

  • Haselwandter K, Leyval C, Sanders FE (1994) Impact of arbuscular mycorrhizal fungi on plant uptake of heavy metals and radionuclides from soil. In: Gianinazzi S, Schüepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhäuser, Berlin, pp 179–189

    Chapter  Google Scholar 

  • Helgason T, Fitter AH, Young JPW (1999) Molecular diversity of arbuscular mycorrhizal fungi colonising Hyacinthoides non-scripta (bluebell) in a semi-natural woodland. Mol Ecol 8:659–666

    Article  CAS  Google Scholar 

  • Hetrick BAD (1991) Mycorrhizas and root architecture. Experientia 47:355–362

    Article  Google Scholar 

  • Hetrick BAD, Wilson GWT, Hartnett DC (1989) Relationship between mycorrhizal dependence and competitive ability of two tallgrass prairie grasses. Can J Bot 67:2608–2615

    Article  Google Scholar 

  • Hetrick BAD, Hartnett DC, Wilson GWT, Gibson DJ (1994) Effects of mycorrhizae, phosphorus availability, and plant density on yield relationships among competing tall-grass prairie grasses. Can J Bot 72:168–176

    Article  Google Scholar 

  • Hobbie EA, Weber NS, Trappe JM (2001) Mycorrhizal vs saprophytic status of fungi: the isotopie evidence. New Phytol 150:601–610

    Article  CAS  Google Scholar 

  • Hooker JE, Munro M, Atkinson D (1992) Vesicular-arbuscular mycorrhizal fungi induced alteration in poplar root system morphology. Plant Soil 145:207–214

    Article  Google Scholar 

  • Imhof S (1999) Anatomy and mycotrophy of the achlorophyllous Afrothismia winkleri. New Phytol 144:533–540

    Article  Google Scholar 

  • Jakobsen I, Abbott LK, Robson AD (1992) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. I. Spread of hyphae and phosphorus inflow into roots. New Phytol 120:371–380

    Article  CAS  Google Scholar 

  • Jakobsen I, Smith SE, Smith FA (2002) Function and diversity of arbuscular mycorrhizas in carbon and mineral nutrition. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin Heidelberg New York, pp 75–92

    Google Scholar 

  • Janos DP (1980) Mycorrhizas influence tropical succession. Biotropia 12:56–64

    Article  Google Scholar 

  • Janos DP (1995) Mycorrhizas, succession and the rehabilitation of deforested lands in the humid tropics. In: Frankland JC, Magan N, Gadd GM (eds) Fungi and environmental change. Cambridge University Press, Cambridge, pp 129–162

    Google Scholar 

  • Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135:575–586

    Article  Google Scholar 

  • Jumpponen A, Trappe JM (1998) Dark septate endophytes: a review of facultative root-colonizing fungi. New Phytol 140:295–310

    Article  Google Scholar 

  • Juniper S, Abbott LK (1993) Vesicular-arbuscular mycorrhizas and soil salinity. Mycor-rhiza 4:45–57

    Article  Google Scholar 

  • Khan AG (1974) The occurrence of mycorrhizas in halophytes, hydrophytes and xero phytes, and of Endogone spores in adjacent soils. J Gen Microbiol 81:7–14

    Article  Google Scholar 

  • Khan AG (1993) Occurrence and importance of mycorrhizae in aquatic trees of New South Wales, Australia. Mycorrhiza 3:31–38

    Article  Google Scholar 

  • Koide RT (1991a) Nutrient supply, nutrient demand and plant response to mycorrhizal infection. New Phytol 117:365–386

    Article  CAS  Google Scholar 

  • Koide RT (1991b) Density-dependent response to mycorrhizal infection in Abutilon theophrasti Medic. Oecologia 85:389–395

    Article  Google Scholar 

  • Koide RT (2000) Functional complementarity in the arbuscular mycorrhizal symbiosis. New Phytol 147:233–235

    Article  Google Scholar 

  • Koide RT, Kabir Z (2000) Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate. New Phytol 148:511–517

    Article  CAS  Google Scholar 

  • Koide RT, Li M, Lewis J, Irby C (1988) Role of mycorrhizal infection in the growth and reproduction of wild vs. cultivated plants. 1. Wild vs. cultivated oats. Oecologia 77:537–542

    Article  Google Scholar 

  • Koide RT, Dickie IA, Goff MD (1999) Phosphorus deficiency, plant growth and the phosphorus efficiency index. Funct Ecol 13:733–736

    Article  Google Scholar 

  • Koide RT, Goff MD, Dickie IA (2000) Component growth efficiencies of mycorrhizal and nonmycorrhizal plants. New Phytol 148:163–168

    Article  Google Scholar 

  • Kope HH, Warcup JH (1986) Synthesised ectomycorrhizal associations of some Australian herbs and shrubs. New Phytol 104:591–599

    Article  Google Scholar 

  • Laiho O (1965) Further studies on the ectendotrophic mycorrhiza. Acta Forestalia Fen-nica 79:1–56

    Google Scholar 

  • Lambers H, Poorter H (1992) Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Adv Ecol Res 23:188–216

    Google Scholar 

  • Leake JR (1994) The biology of myco-heterotrophic (‘saprophytic’) plants. New Phytol 127:171–216

    Article  Google Scholar 

  • Leake JR, Read DJ (1997). Mycorrhizal fungi in terrestrial habitats. In: Wicklow DT, Söderström BE (eds) The Mycota, vol IV. Environmental and microbial relationships, Springer, Berlin Heidelberg New York, pp 281–301

    Google Scholar 

  • Leyval C, Berthelin J (1986) Comparison between the utilization of phosphorus from insoluble mineral phosphates by ectomycorrhizal fungi and rhizobacteria. In: Giani-nazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhiza. INRA, Dijon, France, pp 345–349

    Google Scholar 

  • Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological and applied aspects. Mycorrhiza 7:139–153

    Article  CAS  Google Scholar 

  • Li CY, Massicotte HB, Moore LVH (1992) Nitrogen-fixing Bacillus sp. associated with Douglas-fir tuberculate ectomycorrhizae. Plant Soil 140:35–40

    Article  CAS  Google Scholar 

  • Linderman RG (1994) Role of VAM fungi in biocontroL In: Pfleger FL, Linderman RG (ed) Mycorrhizae and plant health. APS Press, St Paul, Minnesota, pp 1–25

    Google Scholar 

  • Liu G, Chambers SM, Cairney JWG (1998) Molecular diversity of ericoid mycorrhizal endophytes isolated from Woollsia pungens (Cav.) F. Muell. (Epacridaceae). New Phytol 140:145–154

    Article  CAS  Google Scholar 

  • Mäder P, Vierheilig H, Streitwolf-Engel R, Boller T, Frey B, Christie P, Wiemkin A (2001) Transport of 15N from a soil compartment separated by a polytetrafluoroethylene membrane to plant roots via the hyphae of arbuscular mycorrhizal fungi. New Phytol 146:155–161

    Article  Google Scholar 

  • Manjunath A, Habte M (1991) Root morphological characteristics of host species having distinct mycorrhizal dependency. Can J Bot 69:671–676

    Article  Google Scholar 

  • Marler MJ, Zabinski CA, Callaway RM (1999) Mycorrhizae indirectly enhance competitive effects of an invasive forb on native bunchgrass. Ecology 80:1180–1186

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of plants, 2nd edn. Academic Press, London

    Google Scholar 

  • Martin F (2001) Frontiers in molecular mycorrhizal research — genes, loci, dots and spins. New Phytol 150:499–505

    Article  Google Scholar 

  • Martin FM, Hilbert JL (1991) Morphological, biochemical and molecular changes during ectomycorrhizal development. Experientia 47:321–331

    Article  CAS  Google Scholar 

  • McGee PA (1996) The Australian zygomycetous mycorrhizal fungi: the genus Den-sospora gen. nov. Aust Syst Bot 9:329–336

    Article  Google Scholar 

  • McKendrick SL, Leake JR, Read DJ (2000) Symbiotic germination and development of myco-heterotrophic plants in nature: transfer of carbon from ectomycorrhizal Salix repens and Betula pendula to the orchid Corallorhiza trifida through shared hyphal connections. New Phytol 145:539–548

    Article  Google Scholar 

  • Meyer FH (1973) Distribution of ectomycorrhizae in native and man-made forests. In: Marks GC, Kozlowski TT (ed) Ectomycorrhizae. Academic Press, New York, pp 79–106

    Google Scholar 

  • Mikola P (1965) Studies in ectendotrophic mycorrhiza of pine. Acta For Fenn 79:1–56

    Google Scholar 

  • Miller SL, Allen EB (1992) In: Allen MF (ed) Mycorrhizal functioning: an integrative plant-fungal process. Chapman and Hall, London, pp 301–332

    Google Scholar 

  • Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbiosis: community-ecological consequences and practical implications. In: Allen MF (ed) Mycorrhizal functioning: an integrative plant-fungal process. Chapman and Hall, London, pp 357–423

    Google Scholar 

  • Newman EI (1988) Mycorrhizal links between plants: their functioning and ecological significance. Adv Ecol Res 18:243–270

    Article  Google Scholar 

  • Newman EI, Reddell P (1987) The distribution of mycorrhizas among families of vascular plants. New Phytol 106:745–751

    Article  Google Scholar 

  • Nurmiaho-Lassila E-L, Timonen S, Haahtela K, Sen R (1997) Bacterial colonisation patterns of intact Scots pine mycorrhizospheres in dry pine forest soil. Can J Microbiol 43:1017–1035

    Article  CAS  Google Scholar 

  • Nye PH, Tinker PBH (1977) Solute movement in the soil-root system. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • O’Connor PJ, Smith SE, Smith FA (2002) Arbuscular mycorrhizas influence plant diversity and community structure in a semiarid herbland. New Phytologist 154:209–218

    Article  Google Scholar 

  • Odum EP (1969) The strategy of ecosystem development. Science 146:262:270

    Google Scholar 

  • Olsson PA, Jakobsen I, Wallander H (2002) Foraging and resource allocation strategies of mycorrhizal fungi in a patchy environment. In: van der Heijden MG A, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin Heidelberg New York pp 93–115

    Chapter  Google Scholar 

  • Pedersen CT, Sylvia DM, Shilling DG (1999) Pisolithus arhizus ectomycorrhiza affects plant competition for phosphorus between Pinus elliottii and Panicum chamae-lonche. Mycorrhiza 9:199–204

    Google Scholar 

  • Perez-Moreno J, Read DJ (2000) Mobilization and transfer of nutrients from litter to tree seedlings via the vegetative mycelium of ectomycorrhizal plants. New Phytol 145:301–309

    Article  CAS  Google Scholar 

  • Perotto S, Bonfante P (1997) Bacterial associations with mycorrhizal fungi: close and distant friends in the rhizosphere. Trends Microbiol 5:496–501

    Article  PubMed  CAS  Google Scholar 

  • Perry DA, Margolis H, Choquette C, Molina R, Trappe JM (1989) Ectomycorrhizal mediation of competition between coniferous tree species. New Phytol 112:501–511

    Article  Google Scholar 

  • Peterson RL, Currah RS (1990) Synthesis of mycorrhizae between protocorms of Goody-era repens (Orchidaceae) and Ceratobasidium cereale. Can J Bot 68:1117–1125

    Article  Google Scholar 

  • Pfeffer PE, Bago B, Schachar-Hill Y (2001) Exploring mycorrhizal function with NMR spectroscopy. New Phytol 150:543–553

    Article  CAS  Google Scholar 

  • Pfleger FL, Stewart EL, Noyd RK (1994) Role of VAM fungi in mine land revegetation. In: Pfleger FL, Linderman RG (ed) Mycorrhizae and plant health. APS Press, St Paul, Minnesota, pp 47–81

    Google Scholar 

  • Read DJ (1984) The structure and function of the vegetative mycelium of mycorrhizal roots. In: Jennings DH, Rayner ADM (eds) The ecology and physiology of the fungal mycelium. Cambridge University Press, Cambridge, pp 215–240

    Google Scholar 

  • Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47:376–391

    Article  Google Scholar 

  • Read DJ (1992) The mycorrhizal mycelium. In: Allen MF (ed) Mycorrhizal functioning: an integrative plant-fungal process. Chapman and Hall, London, pp 102–133

    Google Scholar 

  • Read DJ (1993) Mycorrhiza in plant communities. Adv Plant Path 9:1–31

    Google Scholar 

  • Read DJ (2000) Links between genetic and functional diversity — a bridge too far? New Phytol 145:363–365

    Article  Google Scholar 

  • Reeves B (1988) Mineral nutrition, mycorrhizal fungi and succession in semiarid environments. In: Ng FSP (ed) Trees and mycorrhiza. The Asian Seminar, Kuala Lumpur, Malaysia, pp 33–50

    Google Scholar 

  • Robinson D (1994) The responses of plants to non-uniform supplies of nutrients. New Phytol 127:635–674

    Article  CAS  Google Scholar 

  • Robinson D, Fitter AH (1999) The magnitude and control of carbon transfer between plants linked by a common mycorrhizal network. J Exp Bot 50:9–13

    CAS  Google Scholar 

  • Sanders IR, Koide RT, Shumway DL (1999) Diversity and structure in natural communities. In: Varma A, Hock B (eds) Mycorrhiza. Structure, function, molecular biology and biotechnology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Sarand L, Timonen S, Rajmaki M, Petola R, Nurmiaho-Lassila E-L, Koivula T, Yrjala K, Haahtela K, Romantschuk M, Sen R (1998) Microbial biofilms and catabolic plasmid harbouring degradative fluorescent pseudomonads in the Scots pine mycorrhizos-phere developed on petroleum contaminated soil. FEMS Microbiol Ecol 27:115–126

    Article  CAS  Google Scholar 

  • Scales P, Peterson RL (1991a) Structure and development oîPinus banksiana-Wilcoxina ectendomycorrhizae. Can J Bot 69:2135–2148

    Article  Google Scholar 

  • Scales P, Peterson RL (1991b) Structure of ectomycorrhizae formed by Wilcoxina miko-lae var. mikolae with Picea mariana and Betula alleghaniensis. Can J Bot 69:2149–2157

    Article  Google Scholar 

  • Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116:447–453

    Article  PubMed  CAS  Google Scholar 

  • Schadt CW, Mullen RB, Schmidt SK (2001) Isolation and phylogenetic identification of a dark-septate fungus associated with the alpine plant Ranunculus adoneus. New Phy-tol 150:747–755

    Article  CAS  Google Scholar 

  • Schüßler A, Schwartzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Sen R, Hietala A, Zelmer A (1999) Common anastomosis and ITS-RFLP groupings among binuculate Rhizoctonia isolates representing root endophytes of Pinus sylvestris, Ceratorhiza spp from orchid mycorrhizas and a phytopathogenic anastomosis group. New Phytol 144:331–341

    Article  CAS  Google Scholar 

  • Sharpies J, Chambers SM, Meharg A, Cairney J WG (2000). Genetic diversity of root-associated fungal endophytes of Calluna vulgaris at contrasting field sites. New Phytol 148:153–162

    Article  Google Scholar 

  • Silberbush M, Barber SA (1984) Phosphorus and potassium uptake of field-grown soybean cultivars predicted by a simulation model. Soil Sci Soc Am J 48:592–596

    Article  CAS  Google Scholar 

  • Simard SW, Jones MD, Durali DM, Perry DA, Myrold DD, Molina R (1997a) Reciprocal transfer of carbon isotopes between ectomycorrhizal Betula papyrifera and Pseudotsuga menziesii. New Phytol 137:529–542

    Article  CAS  Google Scholar 

  • Simard SW, Perry DA, Jones MD, Myrold DD, Durall DM, Molina R (1997b) Net-transfer of carbon between ectomycorrhizal tree species in the field. Nature 388:579–582

    Article  CAS  Google Scholar 

  • Smith FA (2000) Measuring the influence of mycorrhizas. New Phytol 148:4–6

    Article  Google Scholar 

  • Smith SE (1980) Mycorrhizas of autotrophic higher plants. Biol Rev Cambridge Philos Soc 55:475–510

    Article  CAS  Google Scholar 

  • Smith FA, Smith SE (1996a) Mutualism and parasitism: diversity in function and structure in the “arbuscular” (VA) mycorrhizal symbiosis. Adv Bot Res 22:1–43

    Article  Google Scholar 

  • Smith SE, Smith FA (1996b) Membranes in mycorrhizal interfaces: specialized functions in symbiosis. In: Smallwood M, Knox JP, Bowles DJ (eds) Membranes: specialized functions in plants. Bios Scientific Publishers, Oxford, pp 525–542

    Google Scholar 

  • Smith FA, Smith SE (1997) Structural diversity in (vesicular)-arbuscular mycorrhizal fungi. New Phytol 137:373–388

    Article  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • Smith FA, Jakobsen I, Smith SE (2000) Spatial differences in acquisition of soil phosphate between the arbuscular mycorrhizal fungi Scutellospora calospora and Glomus cale-donium in symbiosis with Medicago truncatula. New Phytol 147:357–366

    Article  Google Scholar 

  • Soberon MJ, Martinez del Rio C (1985) Cheating and taking advantage in mutualistic symbioses. In: Boucher D (ed) The biology of mutualism. Croom Helm, London, pp 192–216

    Google Scholar 

  • Söderström B (1992) Ecological potential of ectomycorrhizal mycelium. In: Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds) Mycorrhizas in ecosystems. Cambridge University Press, Cambridge, pp 77–83

    Google Scholar 

  • St. John TV, Coleman DC (1983) The role of mycorrhizas in plant ecology. Can J Bot 61:1005–1015

    Article  Google Scholar 

  • Strzelczyk E, Pokjsa-Burdziej A (1984) Production of auxins and gibberellin-like substances by mycorrhizal fungi, bacteria and actinomycetes isolated from soil and the mycorrhizosphere of pine (Pinus sylvestris L.). Plant Soil 81:185–194

    Article  CAS  Google Scholar 

  • Thomson BD, Robson AD, Abbott LK (1986) Effects of phosphorus on the formation of mycorrhizas by Gigaspora calospora and Glomus fasciculatum in relation to root carbohydrates. New Phytol 103:751–765

    Article  Google Scholar 

  • Tilman D (1988) Plant strategies and the dynamics and structure of plant communities. Princeton University Press, Princeton, New Jersey

    Google Scholar 

  • Timonen S, Tammi H, Sen R (1997) Outcome of interactions between two Suillus spp. and different Pinus sylvestris genotype combinations: identity and distribution of ectomycorrhiza and effects of early seedling growth in N-limited nursery soil. New Phytol 137:691–702

    Article  Google Scholar 

  • Timonen S, Jorgensen KS, Haahtela K, Sen R (1998) Bacterial community structure of Scots pine-Suillus bovinus and Paxillus involutus mycorrhizospheres in dry pine forest soil and nursery peat. Can J Microbiol 44:499–513

    CAS  Google Scholar 

  • Tommerup IC, Abbott LK (1981) Prolonged survival and viability of V.A. mycorrhizal hyphae after root death. Soil Biol Biochem 13:431–433

    Article  Google Scholar 

  • Trappe JM (1987) Phylogenetic and ecologie aspects of mycotrophy in the angiosperms from and evolutionary standpoint. In: Saflr GR (ed) Ecophysiology of VA mycorrhizal plants. CRC Press, Boca Raton, pp 5–25

    Google Scholar 

  • Treseder KK, Allen MF (2000) Mycorrhizal fungi have a potential role in soil carbon storage under elevated C02 and nitrogen deposition New Phytol 147:189–200

    Article  CAS  Google Scholar 

  • van der Heijden MGA, Sanders IR (eds) (2002) Mycorrhizal ecology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • van der Heijden MGA, Boiler T, Wiemken A, Sanders IR (1998a) Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79:2082–2091

    Article  Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998b) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  CAS  Google Scholar 

  • Varese GC, Portinaro S, Trotta A, Scannerini S, Luppi-Mosca AM, Martinotti G (1996) Bacteria associated with Suillus grevillei sporocarps and ectomycorrhizae and their effects on in vitro growth of the mycobiont. Symbiosis 21:129–147

    Google Scholar 

  • Varma A, Hock B (eds) (1999) Mycorrhiza. Structure, function, molecular biology and biotechnology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Varma A, Verma S, Nirmal, Sahay S, Butehorn B, Franken P (1999) Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Appl Environ Microbiol 65:2741–2744

    Google Scholar 

  • Warcup JH (1980) Ectomycorrhizal associations of Australian indigenous plants. New Phytol 85:531–535

    Article  Google Scholar 

  • Warcup JH (1985a) Rhizanthella gardneri (Orchidaceae), its Rhizoctonia endophyte and close association with Melaluca uncinata (Myrtaceae) in western Australia. New Phytol 99:273–280

    Article  Google Scholar 

  • Warcup JH (1985b) Ectomycorrhiza formed by Glomus tubiforme. New Phytol 99:267–272

    Article  Google Scholar 

  • Warcup JH (1990) Taxonomy and culture and mycorrhizal associations of some zygosporic Endogonaceae. Mycol Res 94:173–178

    Article  Google Scholar 

  • Wardle DA (1999) Is ‘sampling effect’ a problem for experiments investigating biodiversity-ecosystem function relationships? Oikos 87:403–407

    Article  Google Scholar 

  • Watkins NK, Fitter AH, Graves JD, Robinson D (1996) Carbon transfer between C3 and C4 plants linked by a common mycorrhizal network, quantified using stable carbon isotopes. Soil Biol Biochem 28:471–477

    Article  CAS  Google Scholar 

  • West H (1996) Influence of arbuscular rnycorrhizal infection on competition between Holcus lanatus and Dactylis glomerata. J Ecol 84:429–438

    Article  Google Scholar 

  • Whittingham J, Read DJ (1982) Vesicular-arbuscular mycorrhiza in natural vegetation systems. III. Nutrient transfer between plants with rnycorrhizal interconnections. New Phytol 90:277–284

    Article  CAS  Google Scholar 

  • Widden P (1997) Competition and the fungal community. In: Wicklow DT, Soderstrom BE (eds) Environmental and microbial relationships. The Mycota, vol IV. Springer, Berlin Heidelberg New York, pp 135–147

    Google Scholar 

  • Wilkinson KG, Dixon KW, Sivasithamparam K, Ghisalberti EL (1994) Effects of IAA on symbiotic germination of an Australian orchid and its production by orchid-associated bacteria. Plant Soil 159:291–295

    Article  CAS  Google Scholar 

  • Wong KKY, Montpetit D, Piché Y, Lei J (1990) Root colonization by four closely related genotypes of the ectomycorrhizal basidiomycete Laccarla bicolor (Maire) Orton — comparative studies using the electron microscope. New Phytol 116:669–679

    Article  Google Scholar 

  • Zhu YG, Cavagnaro TR, Smith SE, Dickson S (2001) Backseat driving? Most plants depend on arbuscular rnycorrhizal fungi to access phosphate beyond the rhizosphere depletion zone. Trends Plant Sci 6:194–195

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Smith, F.A., Smith, S.E., Timonen, S. (2003). Mycorrhizas. In: de Kroon, H., Visser, E.J.W. (eds) Root Ecology. Ecological Studies, vol 168. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09784-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09784-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05520-1

  • Online ISBN: 978-3-662-09784-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics