Skip to main content

Constraints on the Form and Function of Root Systems

  • Chapter

Part of the book series: Ecological Studies ((ECOLSTUD,volume 168))

Abstract

This chapter sets the scene for many of the topics covered in detail later in this volume. We discuss first the basic problems that plants face when growing on land. These problems reflect the many physical, chemical and biological constraints that soil imposes on the functioning of roots in terms of growth and resource capture.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams JM, Woodward FI (1989) Patterns in tree species richness as a test of the glacial extinction hypothesis. Nature 339:699–701

    Article  Google Scholar 

  • Arredondo JT, Johnson DA (1999) Root architecture and biomass allocation of three range grasses in response to nonuniform supply of nutrients and shoot defoliation. New Phytol 143:373–385

    Article  Google Scholar 

  • Asseng S, Aylmore LAG, MacFall JS, Hopmans JW, Gregory PJ (2000) Computer-assisted tomography and magnetic resonance imaging. In: Smit AL, Bengough AG, Engels C, van Noordwijk M, Pellerin S, van de Geijn SC (eds) Root methods. A handbook. Springer, Berlin Heidelberg New York, pp 343–363

    Chapter  Google Scholar 

  • Bailey PJH, Currey JD, Fitter AH (2002). The role of root system architecture and root hairs in promoting anchorage against uprooting forces in Allium cepa and root mutants of Arabidopsis thaliana. J Exp Bot 53:333–340

    Article  PubMed  CAS  Google Scholar 

  • Bouma TJ, Nielsen KL, Van Hal J, Koutstaal B (2001) Root system topology and diameter distribution of species from habitats differing in inundation frequency Funct Ecol 15:360–369

    Article  Google Scholar 

  • Bowen GD, Rovira AD (1991) The rhizosphere: the hidden half of the hidden half. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker, New York, pp 641–669

    Google Scholar 

  • Brady NC, Weil RR (1999) The nature and properties of soil (12th edn). Prentice Hall, Upper Saddle River

    Google Scholar 

  • Canadell J, Jackson RB, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) Maximum rooting depth of vegetation types at the global scale. Oecologia 108:583–595

    Article  Google Scholar 

  • Coutts MP (1986) Components of tree stability in Sitka spruce on peaty gley soil. Forestry 59:173–197

    Article  Google Scholar 

  • Darrah PR (1998) Interactions between root exudates, mineral nutrition and plant growth. In: Lambers H, Poorter H, van Vuuren MMI (eds) Inherent variation in plant growth. Physiological mechanisms and ecological consequences. Backhuys, Leiden, pp 159–181

    Google Scholar 

  • Dawson TE (1993) Hydraulic lift and water-use by plants — implications for water-balance, performance and plant-plant interactions. Oecologia 95:565–574

    Google Scholar 

  • Dinkelaker B, Römheld V, Marschner H (1989) Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.). Plant Cell Environ 12:285–292

    Article  CAS  Google Scholar 

  • Dinkelaker B, Hengeler C, Marschner H (1995) Distribution and function of proteoid roots and other root clusters. Bot Acta 108:183–200

    Google Scholar 

  • Eissenstat DM, Yanai RD (1997) The ecology of root lifespan. Adv Ecol Res 27:1–60

    Article  Google Scholar 

  • Ennos AR (2000) The mechanics of root anchorage. Adv Bot Res 33:133–157

    Article  Google Scholar 

  • Farley RA, Fitter AH (1999) The response of seven co-occurring woodland herbaceous perennials to localized nutrient-rich patches. J Ecol 87:849–859

    Article  Google Scholar 

  • Fitter AH (1985) Functional significance of root morphology and root system architecture. In: Fitter AH, Atkinson D, Read DJ, Usher MB (eds) Ecological interactions in soil. Blackwell, Oxford, pp 87–106

    Google Scholar 

  • Fitter AH (1987) An architectural approach to the comparative ecology of plant root systems. New Phytol 106 (Suppl):61–77

    Google Scholar 

  • Fitter AH (1999). Roots as dynamic systems: the developmental ecology of roots and root systems. In: Press M (ed) Plant physiological ecology, British Ecological Society Symposium No. 39. Blackwell Scientific Publications, Oxford, pp 115–131

    Google Scholar 

  • Fitter AH, Moyersoen B (1996) Evolutionary trends in root-microbe symbioses. Philos Trans R Soc Lond B 351:1367–1375

    Article  Google Scholar 

  • Fitter AH, Stickland TR (1991) Architectural analysis of plant root systems. 2. Influence of nutrient supply on architecture in contrasting plant species. New Phytol 118:383–389

    Article  Google Scholar 

  • Fitter AH, Stickland TR (1992a) Fractal characterization of root-system architecture. Funct Ecol 6:632–635

    Article  Google Scholar 

  • Fitter AH, Stickland TR (1992b) Architectural analysis of plant root systems. III. Studies on plants under field conditions. New Phytol 121:243–248

    Article  Google Scholar 

  • Fitter AH, Stickland TR, Harvey ML, Wilson GW (1991) Architectural analysis of plant root systems. 1. Architectural correlates of exploitation efficiency. New Phytol 118:375–382

    Article  Google Scholar 

  • Fitter AH, Graves JD, Wolfenden J, Self GK, Brown TK, Bogie D, Mansfield TA (1997) Root production and turnover and carbon budgets of two contrasting grasslands under ambient and elevated atmospheric carbon dioxide concentrations. New Phytol 137:247–255

    Article  Google Scholar 

  • Fogel R (1985) Roots as primary producers in below-ground ecosystems. In: Fitter AH, Atkinson D, Read DJ, Usher MB (eds) Ecological interactions in soil: plants, microbes and animals. Blackwell, Oxford, pp 23–36

    Google Scholar 

  • Forde BG, Lorenzo H (2001) The nutritional control of root development. Plant Soil 232:51–68

    Article  CAS  Google Scholar 

  • Gale MR Grigal DK (1987) Vertical root distributions of northern tree species in relation to successional status. Can J For Res 17:929–834

    Article  Google Scholar 

  • Gardner WK, Barber DA, Parbery DG (1982) The acquisition of phosphorus by Lupinus albus L. I. Some characteristics of the soil/root interface. Plant Soil 68:19–32

    Article  CAS  Google Scholar 

  • Gardner WK, Barber DA, Parbery DG (1983) The acquisition of phosphorus by Lupinus albus L. III. The probable mechanism by which phosphorus movement in the soil/root interface is enhanced. Plant Soil 70:107–124

    Article  CAS  Google Scholar 

  • Glass ADM (2003) Homeostatic processes for the optimization of nutrient absorption: physiology and molecular biology. In: Bassiri Rad H (ed) Root ecophysiology. Springer, Berlin Heidelberg New York (in press)

    Google Scholar 

  • Grierson PF (1992) Organic acids in the rhizosphere of Banksia integri/olia L. Plant Soil 144:259–265

    Article  CAS  Google Scholar 

  • Guerrero-Campo J, Fitter AH (2001) Relationships between root characteristics and seed size in two contrasting floras. Acta Oecol 22:77–85

    Article  Google Scholar 

  • Gutschick VP, Pushnik JC (2003) Internal regulation of nutrient uptake by relative growth rate and nutrient use efficiency. In: Bassiri Rad H (ed) Root ecophysiology. Springer, Berlin Heidelberg New York (in press)

    Google Scholar 

  • Handreck KA (1991) Interactions between iron and phosphorus in the nutrition of Banksia ericifolia L. f. var. ericifolia (Proteaceae) in soil-less potting media. Aust J Bot 39:373–384

    Article  CAS  Google Scholar 

  • Harper JL, Jones M, Sackville Hamilton NR (1991) The evolution of roots and the problems of analysing their behaviour. In: Atkinson D (ed) Plant root growth, an ecological perspective. Blackwell, London, pp 3–22

    Google Scholar 

  • Harrison M J (1997) The arbuscular mycorrhizal symbiosis: an underground association. Trends Plant Sci 2:54–60

    Article  Google Scholar 

  • Heidstra R, Bisseling T (1996) Nod factor-induced host responses and mechanisms of Nod factor perception. New Phytol 133:25–43

    Article  CAS  Google Scholar 

  • Hetrick BAD, Wilson GWT, Leslie JF (1991) Root architecture of warm- and cool-season grasses: relationship to mycorrhizal dependence. Can J Bot 69:112–118

    Article  Google Scholar 

  • Hodge A, Robinson D, Fitter AH (2000) Are microbes more effective than plants at competing for nitrogen? Trends Plant Sci 5:304–308

    Article  PubMed  CAS  Google Scholar 

  • Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Hogberg MN, Nyberg G, Ottosson-Lofvenius M, Read DJ (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792

    Article  PubMed  Google Scholar 

  • Hutchinson JMC (2000) Three into two doesn’t go: two-dimensional models of bird eggs, snail shells and plant roots. Biol J Linn Soc 70:161–187

    Google Scholar 

  • Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411

    Article  Google Scholar 

  • Jackson RB, Mooney HA, Schulze ED (1997) A global budget for fine root biomass, sur face area, and nutrient budgets. Proc Natl Acad Sci USA 94:7362–7366

    Article  PubMed  CAS  Google Scholar 

  • Jackson RB, Moore LA, Hoffman WA, Pockman WT, Linder CR (1999) Ecosystem rooting depth determined with caves and DNA. Proc Natl Acad Sci USA 96:11387–11392

    Article  PubMed  CAS  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere: a critical review. Plant Soil 205:25–44

    Article  CAS  Google Scholar 

  • Jones DL, Darrah PR (1994) Amino-acid influx at the soil-root interface of Zea mays L. and its implications in the rhizosphere. Plant Soil 163:1–12

    CAS  Google Scholar 

  • Jones DL, Darrah PR, Kochian LV (1996) Critical evaluation of organic acid mediated iron dissolution in the rhizosphere and its potential role in root iron uptake. Plant Soil 180:57–66

    Article  CAS  Google Scholar 

  • Kutschera L (1960) Wurzelatlas mitteleuropäischer Ackerunkräuter und Kulturpflanzen. DLG Verlag, Frankfurt

    Google Scholar 

  • Lambers H, Chapin FS III, Pons TL (1998) Plant physiological ecology. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Lamont BB (1982) Mechanisms for enhancing nutrient uptake in plants with particular reference to Mediterranean South Africa and western Australia. Bot Rev 48:597–689

    Article  CAS  Google Scholar 

  • Lamont BB (1993) Why are hairy root clusters so abundant in the most nutrient-impoverished soils of Australia? Plant Soil 156:269–272

    Article  Google Scholar 

  • Larcher W (1980) Physiological plant ecology, 2nd edn. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Ma Z, Bielenberg DG, Brown KM, Lynch JP (2001) Regulation of root hair density by phosphorus availability in Arabidopsis thaliana. Plant Cell Environ 24:459–467

    Article  CAS  Google Scholar 

  • Marschner H (1986) Mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  • McCully ME (1999) Roots in soil: unearthing the complexities of roots and their rhizospheres. Annu Rev Plant Physiol Mol Biol 50:695–718

    Article  CAS  Google Scholar 

  • Newman EI, Devoy CLN, Easen NJ, Fowles KJ (1994) Plant-species that can be linked by VA mycorrhizal fungi. New Phytol 126:691–693

    Article  Google Scholar 

  • Niklas KJ (1992) Plant biomechanics. University of Chicago Press, Chicago

    Google Scholar 

  • Niklas KJ (1997) The evolutionary biology of plants. University of Chicago Press, Chicago

    Google Scholar 

  • Niklas KJ (2000) The evolution of plant body plans — a biomechanical perspective. Ann Bot 85:411–438

    Article  Google Scholar 

  • Nobel PS (1991) Physicochemical and environmental plant physiology. Academic Press, San Diego

    Google Scholar 

  • Nye PH (1994) The effect of root shrinkage on soil water inflow. Philos Trans R Soc Lond B 345:395–402

    Article  Google Scholar 

  • Passioura JB (1988) Water transport in and to roots. Ann Rev Plant Physiol Plant Mol Biol 39:245–265

    Article  Google Scholar 

  • Passioura JB (1991) Soil structure and plant growth. Aust J Soil Res 29:717–728

    Article  Google Scholar 

  • Peat HJ, Fitter AH (1993) The distribution of arbuscular mycorrhizas in the British flora. New Phytol 125:845–854

    Article  Google Scholar 

  • Perumalla CJ, Peterson CA, Enstone DE (1990) A survey of angiosperm species to detect hypodermal Casparian bands. 1. Roots with a uniseriate hypodermis and epidermis. Bot J Linn Soc 103:93–112

    Article  Google Scholar 

  • Peterson CA, Perumalla CJ (1990) A survey of angiosperm species to detect hypodermal Casparian bands. 2. Roots with a rnultiseriate hypodermis or epidermis. Bot J Linn Soc 103:113–125

    Article  Google Scholar 

  • Raven JA (1977) The evolution of vascular land plants in relation to supracellular transport processes. Adv Bot Res 5:153–219

    Article  CAS  Google Scholar 

  • Raven JA, Edwards D (2001) Roots: evolutionary origins and biogeochemical significance. J Exp Bot 52:381–401

    Article  PubMed  CAS  Google Scholar 

  • Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47:376–391

    Article  Google Scholar 

  • Reddell P, Yun Y, Shipton WA (1997) Cluster roots and mycorrhizae in Casuarina cun-ninghamiana: their occurrence and formation in relation to phosphorus supply. Aust J Bot 45:41–51

    Article  Google Scholar 

  • Richards JH, Caldwell MM (1987) Hydraulic lift: substantial nocturnal water transport between soil layers by Artemisia tridentata roots. Oecologia 73:486–489

    Article  Google Scholar 

  • Robinson D (1986) Limits to nutrient inflow rates in roots and root systems. Physiol Plant 30:491–494

    Google Scholar 

  • Robinson D (1994a) The response of plants to non-uniform supplies of nutrients. New Phytol 127:635–674

    Article  Google Scholar 

  • Robinson D (1994b) Resource capture by single roots. In: Monteith, JL, Scott RK, Unsworth MH (eds) Resource capture by crops. Nottingham University Press, Nottingham, pp 53–76

    Google Scholar 

  • Robinson D (2003) Integrated root responses to variations in nutrient supply. In: Bassiri-Rad H (ed) Root ecophysiology. Springer, Berlin Heidelberg New York (in press)

    Google Scholar 

  • Robinson D, Fitter A (1999) The magnitude and control of carbon transfer between plants linked by a common mycorrhizal network. J Exp Bot 50:9–13

    Google Scholar 

  • Rowell DL (1994) Soil science: methods and applications. Addison Wesley Longman, Harlow

    Google Scholar 

  • Sanders FE, Tinker PB (1973) Phosphate flow into mycorrhizal roots. Pestic Sci 4:385–395

    Article  CAS  Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Sexstone AJ, Revsbech NP, Parkin TB, Tiedje JM (1985) Direct measurement of oxygen profiles and denitriflcation rates in soil aggregates. Soil Sci Soc Am J 49:645–651

    Article  CAS  Google Scholar 

  • Simard SW, Perry DA, Jones MD, Myrold DD, Durall DM, Molina R (1997) Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 388:579–582

    Article  CAS  Google Scholar 

  • Skene KR (1998) Cluster roots: some ecological considerations. J Ecol 86:1060–1064

    Article  Google Scholar 

  • Steudle E, Peterson CA (1998) How does water get through roots? J Exp Bot 49:775–788

    CAS  Google Scholar 

  • Stokes A, Fitter AH, Coutts MP (1995) Responses of young trees to wind and shading: effects on root architecture. J Exp Bot 46:1139–1146

    Article  CAS  Google Scholar 

  • Stokes A, Ball J, Fitter AH, Brain P, Coutts MP (1996) An experimental investigation of the resistance of model roots systems to uprooting. Ann Bot 78:415–421

    Article  Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Black-well, Oxford

    Google Scholar 

  • Taub DR, Goldberg D (1996) Root system topology of plants from habitats differing in soil resource availability. Funct Ecol 10:258–264

    Article  Google Scholar 

  • Tester M, Morris C (1987) The penetration of light through soil. Plant Cell Environ 10:281–286

    Article  Google Scholar 

  • Tinker PB, Nye PH (2000) Solute movement in the rhizosphere. Oxford University Press, Oxford

    Google Scholar 

  • Treeby M, Marschner H, Römheld V (1989) Mobilisation of iron and other micronutri-ents from a calcareous soil by plant-borne microbial and synthetic metal chelators. Plant Soil 114:217–226

    Article  CAS  Google Scholar 

  • Ver Hoef JM, Cressie N (2001) Spatial statistics: analysis of field experiments. In: Scheiner SM, Gurevitch J (eds) Design and analysis of ecological experiments, 2nd edn. Oxford University Press, Oxford, pp 289–307

    Google Scholar 

  • Watt M, Evans JR (1999) Linking development and determinacy with organic acid efflux from proteoid roots of white lupin grown with low phosphorus and ambient or elevated atmospheric CO2 concentration. Plant Physiol 120:705–716

    Article  PubMed  CAS  Google Scholar 

  • West GB, Brown JH, Enquist BJ (1999) A general model for the structure and allometry of plant vascular systems. Nature 400:664–667

    Article  CAS  Google Scholar 

  • Whittaker RH (1975) Communities and ecosystems, 2nd edn. MacMillan, London

    Google Scholar 

  • Williamson LC, Ribrioux SPCP, Fitter AH, Leyser HMO (2001) Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol 126:875–882

    Article  PubMed  CAS  Google Scholar 

  • Woodward FI, Kelly CK (1997) Plant functional types: towards a definition by environmental constraints. In: Smith TH, Shugart HH, Woodward FI (eds) Plant functional types. Cambridge University Press, Cambridge, pp 47–65

    Google Scholar 

  • Zhang H, Jennings A, Barlow PW, Forde BG (1999) Dual pathways for regulation of root branching by nitrate. Proc Natl Acad Sci USA 96:6529–6534

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Robinson, D., Hodge, A., Fitter, A. (2003). Constraints on the Form and Function of Root Systems. In: de Kroon, H., Visser, E.J.W. (eds) Root Ecology. Ecological Studies, vol 168. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09784-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09784-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05520-1

  • Online ISBN: 978-3-662-09784-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics