Advertisement

Robot Vision pp 129-142 | Cite as

Towards a Flexible Vision System

  • O. D. Faugeras
  • F. Germain
  • G. Kryze
  • J. D. Boissonnat
  • M. Herbert
  • J. Ponce
  • E. Pauchon
  • N. Ayache
Part of the International Trends in Manufacturing Technology book series (MANUTECH)

Abstract

A Vision System designed for building accurate models of industrial parts is described. Potential applications include tolerancing testing, data base acquisition and automatic recognition of objects. The system is made of a laser rangefinder that measures the position in space of points on the parts by active stereoscopy, a table on which the parts are positioned and can be translated vertically and rotated under computer control, and a set of algorithms to produce accurate geometric models of the part based on the measurements made by the laser. Representation and recognition results are presented on a variety of objects as shaded graphics displays.

Keywords

Range Data Composite Object Laser Range Finder Polygonal Approximation Polyhedral Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. D. Boissonnat and F. Germain, ‘A New Approcah to the Problem of Acquiring Randomly Oriented Workpieces out of a Bin’, Proc. 7th Int. Joint Conf. On Artificial Intelligence, pp. 796–802 (1981).Google Scholar
  2. [2]
    T. O. Binford, ‘Visual Perception by Computer’, IEEE Conf. on Systems and Control, Miami (December 1971).Google Scholar
  3. [3]
    G. J. Agin and T. O. Binford, ‘Computer Description of Curved Objects’, Proc. 3rd Int. Joint Conf. on Artificial Intelligence,pp. 629–640.Google Scholar
  4. [4]
    R. Nevatia and T. O. Binford, ‘Description and Recognition of Curved Objects’, Artificial Intelligence, Vol. 8, pp. 77–98 (1977).MATHCrossRefGoogle Scholar
  5. [5]
    R. K. Bajcsy and B. I. Soroka, ‘Steps towards the Representation of Complex Three-Dimensional Objects’, Proc. 5th Int. Joint Conf. on Artificial Intelligence,pp. 596.Google Scholar
  6. [6]
    D. Marr, ‘Representing Visual Information — A Computational Approach’, in Computer Vision Systems, A. R. Hanson and E. M. Riseman (Eds.), pp. 61–80, Academic Press (1978).Google Scholar
  7. [7]
    N. Badler and R. Bajcsy, ‘Three-Dimensional Representation for Computer Graphics and Computer Vision’, ACM Computer Graphics, Vol. 12, pp. 153–160 (August 1978).CrossRefGoogle Scholar
  8. [8]
    M. Oshima and Y. Shirai, ‘A Scene Description Method Using Three-Dimensional Information’, Pattern Recognition, Vol. 11, pp. 9–17 (1978).CrossRefGoogle Scholar
  9. [9]
    Y. Shirai, ‘On Application of 3-Dimensional Computer Vision’, Bul. Electrotech. Lab., Vol. 43, No. 6 (1979).Google Scholar
  10. [10]
    Y. Shirai, ‘Use of Models in Three-Dimensional Object Recognition’, in Man-Machine Communication in CAD/CAM, T. Sata, E. Warman (Eds.), North-Holland Publishing Company (1981).Google Scholar
  11. [11]
    B. Bhanu, ‘Shape Matching and Image Segmentation Using Stochastic Labelling’, Ph.D Dissertation, University of Southern California, Los Angeles, August 1981.Google Scholar
  12. [12]
    D. T. Lee and B. J. Schacter, ‘Two Algorithms for Constructing a Delaunay Triangulation, Int. Journal ofComp. And Inf. Sciences, Vol. 9, No. 3 (1980).Google Scholar
  13. [13]
    F. P. Preparata and S. J. Hong, ‘Convex Hulls of Finite Sets of Points in Two and Three Dimensions’, Comm. ACM, Vol. 20, No. 2 (1977).Google Scholar
  14. [14]
    D. Hilbert and S. Cohn Vossen, Geometry and Imagination,Chelsea.Google Scholar
  15. [15]
    J. L. Bentley, J. H. Friedman, ‘Fast Algorithms for Constructing Minimal Spanning Trees in Coordinate Spaces’, IEEE Trans. Comp., Vol. C-27, No. 2 (February 1978).Google Scholar
  16. [16]
    J. D. Boissonnat and O. D. Faugeras, ‘Triangulation of 3-D Objects’, Proc. 7th Int. Joint Conf. on Artificial Intelligence, pp. 658–660 (1981).Google Scholar
  17. [17]
    L. Kitchen and A. Rosenfeld, ‘Discrete Relaxation for Matching Relational Structures’, IEEE Trans. Systems, Man and Cybernetics, Vol. SMC-9, pp. 869–874 (Dec. 1979).Google Scholar
  18. [18]
    L. Kitchen, ‘Relaxation Applied to Matching Quantitative Relational Structures’, IEEE Trans. Systems, Man and Cybernetics, Vol. SMC-10, pp. 96–101 (February 1980).Google Scholar
  19. [19]
    R. M. Haralick and L. G. Shapiro, ‘The Consistent Labelling Problem, Part I’, IEEE Trans. Pattern Anal. Machine Intell., Vol. PAMI-I, pp. 173–184 (April 1979).Google Scholar
  20. [20]
    R. M. Haralick and L. G Shapiro, ‘The Consistent Labelling Problem, Part II’, IEEE Trans. Pattern Anal. Machine Intell., Vol. PAMI-2, pp. 193–203 (May 1980).Google Scholar
  21. [21]
    O. D. Faugeras and K. Price, ‘Semantic Description of Aerial Images Using Stochastic Labelling’, IEEE Trans, Pattern Anal. Machine Intell., Vol. PAMI-, pp. (November 1981).Google Scholar
  22. [22]
    O. D. Faugera and M. Berthod, ‘Scene Labelling: an Optimization Approach’, IEEE Trans. Pattern Anal. Machine Intell., Vol. PAMI-, pp. (1981).Google Scholar
  23. [23]
    M. Hebert and J. Ponce, ‘A New Method For Segmenting 3-D Scenes’. I.C.P.R. (October 1982).Google Scholar
  24. [24]
    J.Serra, Image Analysis and Mathematical Morphology,Academic Press (1981).Google Scholar
  25. [25]
    E. Pauchon, These de Docteur Ingenieur, Universite d’Orsay, 1983, to appear.Google Scholar
  26. [26]
    N. Ayache, ‘Reconnaissance d’objets 2-D parteillement caches’, These de Docteur Ingenieur, Universite d’Orsay, to appear December 1982.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • O. D. Faugeras
    • 1
  • F. Germain
    • 1
  • G. Kryze
    • 1
  • J. D. Boissonnat
    • 1
  • M. Herbert
    • 1
  • J. Ponce
    • 1
  • E. Pauchon
    • 1
  • N. Ayache
    • 1
  1. 1.INRIA Domaine de Voluceau-RocquencourtFrance

Personalised recommendations