Skip to main content

Adaptive Visual Servo Control of Robots

  • Chapter
Robot Vision

Part of the book series: International Trends in Manufacturing Technology ((MANUTECH))

Abstract

Visual servo robot control systems provide feedback on the relative end-effector position of a robot. They offer an interactive positioning mechanism which depends upon extraction and interpretation of visual information from the environment. In this paper, we characterise visual servo systems by the feedback representation mode, position-based or image-based, and the joint control mode, closed-loop or open-loop. The design problems posed by nonlinear and coupling transformations introduced by visual tracking systems are discussed, and a design strategy which utilises adaptive control, direction detection, and a logical control hierarchy is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Nitzan and C. Rosen, et. al. ‘Machine Intelligence Research Applied to Industrial Automation’. Tech. report 9, SRI International (August 1979).

    Google Scholar 

  2. G. Agin, ‘Real Time Control of a Mobile Robot with a Camera’. Tech. note 179, SRI International (February 1979).

    Google Scholar 

  3. G. Vanderbrug, et. al. ‘A Vision System for Real Time Control of Robots’, Proc. 9th Int. Symp. on Industrial Robots, Washington, DC. USA, pp. 213–231, Society of Manufacturing Engineers (March 1979).

    Google Scholar 

  4. S. Kashioka, et. al. ‘An Approach to the Integrated Intelligent Robot with Multiple Sensory Feedback: Visual Recognition Techniques’, Proc. 7th Int. Symp. on Industrial Robots, Tokyo, Japan, pp. 531–538, Japan Industrial Robot Association (October 1977).

    Google Scholar 

  5. K. Tani, et. al. ‘High Precision Manipulator with Visual Sense’, Proc. 7th Int. Symp. on Industrial Robots, Tokyo, Japan, pp. 561–568, Japan Industrial Robot Association (October 1977).

    Google Scholar 

  6. M. R. Ward, et al. ‘Consight: A Practical Vision-Based Robot Guidance System’, Proc. 9th Int. Symp. on Industrial Robots, Washington, DC, USA, pp. 195–211, Society of Manufacturing Engineers (March 1979).

    Google Scholar 

  7. J. Birk, et. al. ‘General Methods to Enable Robots with Vision to Acquire, Orient, and Transport Workpieces’. Tech. report 5, University of Rhode Island (August 1979).

    Google Scholar 

  8. R. Abraham, ‘APAS: Adaptable Programmable Assembly System’. Computer Vision and Sensor Based Robots, G. Dodd and G. Rossol, eds., Plenum, pp. 117–140 (1979).

    Google Scholar 

  9. A. C. Sanderson and L. E. Weiss, ‘Image-Based Visual Servo Control Using Relational Graph Error Signals’. Proc. of the Int. Conf. on Cybernetics and Society, Cambridge, MA, IEEE SMC, pp. 1074–1077 (October 1980).

    Google Scholar 

  10. H. P. Moravec, ‘Obstacle Avoidance and Navigation in the Real World by a Seeing Eye Robot Rover’. Tech. report 3, Carnegie-Mellon Univ., The Robotics Institute (September 1980).

    Google Scholar 

  11. R. P. Paul, Robot Manipulators: Mathematics, Programming, and Control, MIT Press (1981).

    Google Scholar 

  12. J. S. Albus, ‘A New Approach to Manipulator Controls: The Cerebellar Model Articulation Controller (CMAC)’, Trans. ASME Journal of Dynamic Systems, Measurement and Control’, pp. 220–227 (September 1975).

    Google Scholar 

  13. A. K. Bejczy, ‘Robot Arm Dynamics and Control’. NASA—JPL Technical Memorandum, 33–669 (February 1974).

    Google Scholar 

  14. B. K. P. Horn and M. H. Raibert, ‘Manipulator control using the configuration space method’, The Industrial Robot, Vol. 5, No. 2, pp. 69–73 (June 1978).

    Article  Google Scholar 

  15. J. Luh, M. Walker and R. Paul, ‘Resolved Acceleration Control of Mechanical Manipulation’. IEEE Trans. on Automatic Control, AC-25, 3, pp. 468–474 (June 1980).

    Article  Google Scholar 

  16. D. E. Orin, R. B. McGhee, M. Vukobratovic, et. al. ‘Kinematic and Kinetic Analysis of Open-Chain Linkages Utilising Newton-Euler Methods’. Math. Biosc. 43, pp. 107–130 (1979).

    Article  MATH  Google Scholar 

  17. Y. D. Landau, Adaptive Control— The Model Reference Approach. Marcel Decker (1979).

    Google Scholar 

  18. K. S. Norendra, ed., Applications ofAdaptive Control, Academic Press (1980).

    Google Scholar 

  19. K. S. Norendra, ed., Proc. Workshop on Applications of Adaptive Systems Theory, Yale University (May 1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sanderson, A.C., Weiss, L.E. (1983). Adaptive Visual Servo Control of Robots. In: Pugh, A. (eds) Robot Vision. International Trends in Manufacturing Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09771-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09771-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-09773-1

  • Online ISBN: 978-3-662-09771-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics