Modulation of Alternative Splicing by Antisense Oligonucleotides

  • P. Sazani
  • R. Kole
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 31)


Sequence-specific base pairing is the principle mechanism by which antisense oligonucleotides function as therapeutics and sequence-specific research tools. The same basic mechanism of action is used for regulation of expression of certain genes by living cells. Antisense genes were found in E. coli (Simons and Kleckner 1988) and more recently in C. elegans (Ambros 2000) and in human cells (Hastings et al. 2000). Inhibition of Rous sarcoma virus replication by a synthetic 13-mer antisense DNA molecule (Zamecnik and Stephenson, 1978) provides one of the first examples of the effects of antisense oligonucleotides. For antisense genes and oligonucleotides the assumed or determined function was to decrease the expression of their sense target RNAs. Numerous subsequent papers, involving downregulation of gene expression, reported that DNA oligonucleotides were downregulating gene expression by base pairing to mRNA and eliciting destruction of the RNA in the RNA-DNA duplex by ribonuclease H (RNase H). Modified oligonucleotides that do not elicit RNase H activity or triplex-forming oligonucleotides that interact with DNA targets were also extensively used for downregulation of gene expression. The anti-sense field was extensively reviewed in a recent volume (Crooke 2001).


Alternative Splice Splice Site Cystic Fibrosis Transmembrane Conductance Regulator Enhance Green Fluorescent Protein Duchenne Muscular Dystrophy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abeliovich D, Lawn IP, Lerer I, Cohen T, Springer C, Avital A, Cutting GR (1992) Screening for five mutations detects 97% of cystic fibrosis (CF) chromosomes and predicts a carrier frequency of 1: 29 in the Jewish Ashkenazi population. Am J Hum Genet 51: 951–956PubMedGoogle Scholar
  2. Adachi T, Alam R (1998) The mechanism of IL-5 signal transduction. Am J Physiol 275: C623 - C633PubMedGoogle Scholar
  3. Akhtar S, Kole R, Juliano RL (1991) Stability of antisense DNA oligodeoxynucleotide analogs in cellular extracts and sera. Life Sci 49: 1793–1801PubMedCrossRefGoogle Scholar
  4. Ambros V (2000) Control of developmental timing in Caenorhabditis elegans. Curr Opin Genet Dev 10: 428–433PubMedCrossRefGoogle Scholar
  5. Balow G, Mohan V, Lesnik EA, Johnston JF, Monia BP, Acevedo OL (1998) Biophysical and anti-sense properties of oligodeoxynucleotides containing 7-propynyl-, 7-iodo-and 7-cyano-7deaza-2-amino-2’-deoxyadenosines. Nucleic Acids Res 26: 3350–3357PubMedCrossRefGoogle Scholar
  6. Bennett CF, Chiang MY, Chan H, Shoemaker JE, Mirabelli CK (1992) Cationic lipids enhance cellular uptake and activity of phosphorothioate antisense oligonucleotides. Mol Pharmacol 41: 1023–1033PubMedGoogle Scholar
  7. Berget SM (1995) Exon recognition in vertebrate splicing. J Biol Chem 270: 2411–2414PubMedGoogle Scholar
  8. Blencowe BJ (2000) Exonic splicing enhancers: mechanism of action, diversity and role in human genetic diseases. Trends Biochem Sci 25: 106–110PubMedCrossRefGoogle Scholar
  9. Boise LH, Gonzalez-Garcia M, Postema CE, Ding L, Lindsten T, Turka LA, Mao X, Nunez G, Thompson CB (1993) bd-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74: 597–608Google Scholar
  10. Brenner R, Yu JY, Srinivasan K, Brewer L, Larimer JL, Wilbur JL, Atkinson NS (2000) Complementation of physiological and behavioral defects by a slowpoke Ca(2+) -activated K(+) channel transgene. J Neurochem 75: 1310–1319PubMedCrossRefGoogle Scholar
  11. Brogna S (2001) Pre-mRNA processing: insights from nonsense. Curr Biol 11: R838 - R841PubMedCrossRefGoogle Scholar
  12. Bulfield G, Siller WG, Wight PA, Moore KJ (1984) X chromosome-linked muscular dystrophy (mdx) in the mouse. Proc Natl Acad Sci USA 81: 1189–1192PubMedCrossRefGoogle Scholar
  13. Burge C, Tuschl T, Sharp P (1999) Splicing of precursors to mRNAs by the spliceosomes. In: Gesteland R, Cech T, Atkins J (eds) The RNA world. CSHL Press, Cold Spring Harbor, pp 525–560Google Scholar
  14. Condon TP, Bennett CF (1996) Altered mRNA splicing and inhibition of human E-selectin expression by an antisense oligonucleotide in human umbilical vein endothelial cells. J Biol Chem 271: 30398–30403PubMedCrossRefGoogle Scholar
  15. Consortium IHGS (2001) Initial sequencing and analysis of the human genome. Nature 409: 860–921CrossRefGoogle Scholar
  16. Crooke S (ed) (2001) Antisense drug technology. Marcel Dekker, New YorkGoogle Scholar
  17. DeDionisio L, Gryaznov SM (1995) Analysis of a ribonuclease H digestion of N3’-*P5’ phosphoramidate-RNA duplexes by capillary gel electrophoresis. J Chromatogr B Biomed Appl 669: 125–131PubMedCrossRefGoogle Scholar
  18. Dominski Z, Kole R (1993) Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides. Proc Natl Acad Sci USA 90: 8673–8677PubMedCrossRefGoogle Scholar
  19. Dominski Z, Kole R (1994) Identification and characterization by antisense oligonucleotides of exon and intron sequences required for splicing. Mol Cell Biol 14: 7445–7454PubMedGoogle Scholar
  20. Dunckley MG, Manoharan M, Villiet P, Eperon IC, Dickson G (1998) Modification of splicing in the dystrophin gene in cultured Mdx muscle cells by antisense oligoribonucleotides. Hum Mol Genet 7: 1083–1090PubMedCrossRefGoogle Scholar
  21. Faria M, Wood CD, Perrouault L, Nelson JS, Winter A, White MR, Helene C, Giovannangeli C (2000) Targeted inhibition of transcription elongation in cells mediated by triplex-forming oligonucleotides. Proc Natl Acad Sci USA 97: 3862–3867PubMedCrossRefGoogle Scholar
  22. Faria M, Spiller DG, Dubertret C, Nelson JS, White MR, Scherman D, Helene C, Giovannangeli C(2001) Phosphoramidate oligonucleotides as potent antisense molecules in cells and in vivo. Nat Biotechnol 19: 40–44Google Scholar
  23. Flanagan WM, Kothavale A, Wagner RW (1996) Effects of oligonucleotide length, mismatches and mRNA levels on C-5 propyne-modified antisense potency. Nucleic Acids Res 24: 29362941Google Scholar
  24. Flanagan WM, Wagner RW, Grant D, Lin KY, Matteucci MD (1999a) Cellular penetration and anti-sense activity by a phenoxazine-substituted heptanucleotide. Nat Biotechnol 17: 48–52PubMedCrossRefGoogle Scholar
  25. Flanagan WM, Wolf JJ, Olson P, Grant D, Lin KY, Wagner RW, Matteucci MD (1999b) A cytosine analog that confers enhanced potency to antisense oligonucleotides. Proc Natl Acad Sci USA 96: 3513–3518PubMedCrossRefGoogle Scholar
  26. Friedman KJ, Kole J, Cohn JA, Knowles MR, Silverman LM, Kole R (1999) Correction of aberrant splicing of the cystic fibrosis transmembrane conductance regulator ( CFTR) gene by anti-sense oligonucleotides. J Biol Chem 274: 36193–36199Google Scholar
  27. Furdon PJ, Dominski Z, Kole R (1989) RNase H cleavage of RNA hybridized to oligonucleotides containing methylphosphonate, phosphorothioate and phosphodiester bonds. Nucleic Acids Res 17: 9193–9204PubMedCrossRefGoogle Scholar
  28. Gemignani F, Landi S, DeMarini DM, Kole R (2001) Spontaneous and MNNG-induced reversion of an EGFP construct in HeLa cells: an assay for observing mutations in living cells by fluorescent microscopy. Hum Mutat 18: 526–534PubMedCrossRefGoogle Scholar
  29. Giles RV, Spiller DG, Clark RE, Tidd DM (1999) Antisense morpholino oligonucleotide analog induces missplicing of C-myc mRNA. Antisense Nucleic Acid Drug Dev 9: 213–220PubMedCrossRefGoogle Scholar
  30. Goedert M, Spillantini MG, Potier MC, Ulrich J, Crowther RA (1989) Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain. EMBO J 8: 393–399PubMedGoogle Scholar
  31. Gorman L, Suter D, Emerick V, Schumperli D, Kole R (1998) Stable alteration of pre-mRNA splic- ing patterns by modified U7 small nuclear RNAs. Proc Natl Acad Sci USA 95: 4929–4934PubMedCrossRefGoogle Scholar
  32. Griffey RH, Monia BP, Cummins LL, Freier S, Greig MJ, Guinosso CJ, Lesnik E, Manalili SM, Mohan V, Owens S, Ross BR, Sasmor H, Wancewicz E, Weiler K, Wheeler PD, Cook PD (1996) 2’-0aminopropyl ribonucleotides: a zwitterionic modification that enhances the exonuclease resistance and biological activity of antisense oligonucleotides. J Med Chem 39: 5100–5109Google Scholar
  33. Gryaznov SM, Lloyd DH, Chen JK, Schultz RG, DeDionisio LA, Ratmeyer L, Wilson WD (1995) Oligonucleotide N3’-*P5’ phosphoramidates. Proc Natl Acad Sci USA 92: 5798–5802PubMedCrossRefGoogle Scholar
  34. Hanvey JC, Peffer NJ, Bisi JE, Thomson SA, Cadilla R, Josey JA, Ricca DJ, Hassman CF, Bonham MA, Au KG et al. (1992) Antisense and antigene properties of peptide nucleic acids. Science 258: 1481–1485PubMedCrossRefGoogle Scholar
  35. Hastings ML, Krainer AR (2001) Pre-mRNA splicing in the new millennium. Curr Opin Cell Biol 13: 302–309PubMedCrossRefGoogle Scholar
  36. Hastings ML, Ingle HA, Lazar MA, Munroe SH (2000) Post-transcriptional regulation of thyroid hormone receptor expression by cis-acting sequences and a naturally occurring antisense RNA. J Biol Chem 275: 11507–11513PubMedCrossRefGoogle Scholar
  37. Heidenreich 0, Gryaznov S, Nerenberg M (1997) RNase H-independent antisense activity of oligonucleotide N3’-*P5’ phosphoramidates. Nucleic Acids Res 25: 776–780PubMedCrossRefGoogle Scholar
  38. Herdewijn P (2000) Heterocyclic modifications of oligonucleotides and antisense technology. Antisense Nucleic Acid Drug Dev 10: 297–310PubMedCrossRefGoogle Scholar
  39. Hertel KJ, Lynch KW, Maniatis T (1997) Common themes in the function of transcription and splicing enhancers. Curr Opin Cell Biol 9: 350–357PubMedCrossRefGoogle Scholar
  40. Highsmith WE, Burch LH, Zhou Z, Olsen JC, Boat TE, Spock A, Gorvoy JD, Quittel L, Friedman KJ, Silverman LM et al. (1994) A novel mutation in the cystic fibrosis gene in patients with pulmonary disease but normal sweat chloride concentrations. N Engl J Med 331: 974–980PubMedCrossRefGoogle Scholar
  41. Hutton M (2001) Missense and splice site mutations in tau associated with FTDP-17: multiple pathogenic mechanisms. Neurology 56: S21 - S25PubMedCrossRefGoogle Scholar
  42. Iborra FJ, Jackson DA, Cook PR (2001) Coupled transcription and translation within nuclei of mammalian cells. Science 293: 1139–1142PubMedCrossRefGoogle Scholar
  43. Imamura F, Takaki S, Akagi K, Ando M, Yamamura K, Takatsu K, Tominaga A (1994) The murine interleukin-5 receptor alpha-subunit gene: characterization of the gene structure and chromosome mapping. DNA Cell Biol 13: 283–292PubMedCrossRefGoogle Scholar
  44. Ishigaki Y, Li X, Serin G, Maquat LE (2001) Evidence for a pioneer round of mRNA translation: mRNAs subject to nonsense-mediated decay in mammalian cells are bound by CBP80 and CBP20. Cell 106: 607–617PubMedCrossRefGoogle Scholar
  45. Kalbfuss B, Mabon SA, Misteli T (2001) Correction of alternative splicing of tau in frontotemporal dementia and parkinsonism linked to chromosome 17. J Biol Chem 276: 4298642993Google Scholar
  46. Kan Z, Rouchka EC, Gish WR, States DJ (2001) Gene structure prediction and alternative splicing analysis using genomically aligned ESTs. Genome Res 11: 889–900PubMedCrossRefGoogle Scholar
  47. Kang SH, Cho MJ, Kole R (1998) Up-regulation of luciferase gene expression with antisense oligonucleotides: implications and applications in functional assay development. Biochemistry 37: 6235–6239PubMedCrossRefGoogle Scholar
  48. Kang SH, Zirbes EL, Kole R (1999) Delivery of antisense oligonucleotides and plasmid DNA with various carrier agents. Antisense Nucleic Acid Drug Dev 9: 497–505PubMedCrossRefGoogle Scholar
  49. Karras JG, McKay RA, Dean NM, Monia BP (2000) Deletion of individual exons and induction of soluble murine interleukin-5 receptor-alpha chain expression through antisense oligonucleotide-mediated redirection of pre-mRNA splicing. Mol Pharmacol 58: 380–387PubMedGoogle Scholar
  50. Kean JM, Kipp SA, Miller PS, Kulka M, Aurelian L (1995) Inhibition of herpes simplex virus replication by antisense oligo-2’-0-methylribonucleoside methylphosphonates. Biochemistry 34: 14617–14620PubMedCrossRefGoogle Scholar
  51. Koenig M, Beggs AH, Moyer M, Scherpf S, Heindrich K, Bettecken T, Meng G, Muller CR, Lindlof M, Kaariainen H et al. (1989) The molecular basis for Duchenne versus Becker muscular dystrophy: correlation of severity with type of deletion. Am J Hum Genet 45: 498–506PubMedGoogle Scholar
  52. Kole R, Sazani P (2001) Antisense effects in the cell nucleus: modification of splicing. Curr Opin Mol Ther 3: 229–234PubMedGoogle Scholar
  53. Kole R, Shukla R, Akhtar S (1991) Pre-mRNA splicing as a target for antisense oligonucleotides. Adv Drug Delivery Rev 6: 271–286CrossRefGoogle Scholar
  54. Kotsimbos AT, Hamid Q (1997) IL-5 and IL-5 receptor in asthma. Mem Inst Oswaldo Cruz 92: 75–91PubMedCrossRefGoogle Scholar
  55. Krainer A (ed) (1997) Eukaryotic mRNA processing. Oxford University Press, New YorkGoogle Scholar
  56. Krajewska M, Krajewski S, Epstein JI, Shabaik A, Sauvageot J, Song K, Kitada S, Reed JC (1996) Immunohistochemical analysis of bd-2, bax, bd-X, and mcl-1 expression in prostate cancers. Am J Pathol 148: 1567–1576PubMedGoogle Scholar
  57. Krawczak M, Reiss J, Cooper DN (1992) The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences. Hum Genet 90: 41–54PubMedCrossRefGoogle Scholar
  58. Lacerra G, Sierakowska H, Carestia C, Fucharoen S, Summerton J, Weller D, Kole R (2000) Restoration of hemoglobin A synthesis in erythroid cells from peripheral blood of thalassemic patients. Proc Natl Acad Sci USA 97: 9591–9596PubMedCrossRefGoogle Scholar
  59. Letsinger RL, Mungall WS (1970) Phosphoramidate analogs of oligonucleotides. J Org Chem 35: 3800–3803PubMedCrossRefGoogle Scholar
  60. Lewis J, Yang B, Kim R, Sierakowska H, Kole R, Smithies O, Maeda N (1998) A common human beta globin splicing mutation modeled in mice. Blood 91: 2152–2156PubMedGoogle Scholar
  61. Lin KY, Matteucci MD (1998) A cytosine analog capable of clamp-like binding to a guanine in helical nucleic acids. J Am Chem Soc 120: 8531–8532CrossRefGoogle Scholar
  62. Lin KY, Jones RJ, Matteucci M (1995) Tricyclic 2’-deoxycytidine analogs: synthesis and incorporation into oligonucleotides which have enhanced binding to complementary RNA. J Am Chem Soc 117: 3873–3874CrossRefGoogle Scholar
  63. Liu HX, Chew SL, Cartegni L, Zhang MQ, Krainer AR (2000) Exonic splicing enhancer motif recognized by human SC35 under splicing conditions. Mol Cell Biol 20: 1063–1071PubMedCrossRefGoogle Scholar
  64. Liu HX, Cartegni L, Zhang MQ, Krainer AR (2001) A mechanism for exon skipping caused by nonsense or missense mutations in BRCA1 and other genes. Nat Genet 27: 55–58PubMedGoogle Scholar
  65. Lorenz P, Misteli T, Baker BF, Bennett CF, Spector DL (2000) Nucleocytoplasmic shuttling: a novel in vivo property of antisense phosphorothioate oligodeoxynucleotides. Nucleic Acids Res 28: 582–592PubMedCrossRefGoogle Scholar
  66. Mann CJ, Honeyman K, Cheng AJ, Ly T, Lloyd F, Fletcher S, Morgan JE, Partridge TA, Wilton SD (2001) Antisense-induced exon skipping and synthesis of dystrophin in the mdx mouse. Proc Natl Acad Sci USA 98: 42–47PubMedCrossRefGoogle Scholar
  67. Manoharan M (1999) 2’-Carbohydrate modifications in antisense oligonucleotide therapy: importance of conformation, configuration and conjugation. Biochim Biophys Acta 1489: 117–130Google Scholar
  68. Marcusson EG, Bhat B, Manoharan M, Bennett CF, Dean NM (1998) Phosphorothioate oligodeoxyribonucleotides dissociate from cationic lipids before entering the nucleus. Nucleic Acids Res 26: 2016–2023PubMedCrossRefGoogle Scholar
  69. Mercatante DR, Bortner CD, Cidlowski JA, Kole R (2001) Modification of alternative splicing of Bd-x pre-mRNA in prostate and breast cancer cells. Analysis of apoptosis and cell death. J Biol Chem 276: 16411–16417Google Scholar
  70. Micklefield J (2001) Backbone modification of nucleic acids: synthesis, structure and therapeutic applications. Curr Med Chem 8: 1157–1179PubMedCrossRefGoogle Scholar
  71. Miller P (1998) Oligonucleotide methylphosphonates: synthesis and properties. In: Stein C, Krieg A (eds) Applied antisense oligonucleotide technology. Wiley-Liss, New York, pp 3–22Google Scholar
  72. Miller PS, Cassidy RA, Hamma T, Kondo NS (2000) Studies on anti-human immunodeficiency virus oligonucleotides that have alternating methylphosphonate/phosphodiester linkages. Pharmacol Ther 85: 159–163PubMedCrossRefGoogle Scholar
  73. Moulds C, Lewis JG, Froehler BC, Grant D, Huang T, Milligan JF, Matteucci MD, Wagner RW (1995) Site and mechanism of antisense inhibition by C-5 propyne oligonucleotides. Biochemistry 34: 5044–5053PubMedCrossRefGoogle Scholar
  74. Nielsen PE, Egholm M, Berg RH, Buchardt 0 (1991) Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254: 1497–1500Google Scholar
  75. Obika S, Uneda T, Sugimoto T, Nanbu D, Minami T, Doi T, Imanishi T (2001) 2’-O,4’-C-Methylene bridged nucleic acid (2’,4’-BNA): synthesis and triplex-forming properties. Bioorg Med Chem 9: 1001–1011Google Scholar
  76. Orum H, Wengel J (2001) Locked nucleic acids: a promising molecular family for gene-function analysis and antisense drug development. Curr Opin Mol Ther 3: 239–243PubMedGoogle Scholar
  77. Partridge M, Vincent A, Matthews P, Puma J, Stein D, Summerton J (1996) A simple method for delivering morpholino antisense oligos into the cytoplasm of cells. Antisense Nucleic Acid Drug Dev 6: 169–175PubMedCrossRefGoogle Scholar
  78. Pertea M, Lin X, Salzberg SL (2001) GeneSplicer: a new computational method for splice site prediction. Nucleic Acids Res 29: 1185–1190PubMedCrossRefGoogle Scholar
  79. Raviprakash K, Liu K, Matteucci M, Wagner R, Riffenburgh R, Carl M (1995) Inhibition of dengue virus by novel, modified antisense oligonucleotides. J Virol 69: 69–74PubMedGoogle Scholar
  80. Sazani P, Kang SH, Maier MA, Wei C, Dillman J, Summerton J, Manoharan M, Kole R (2001) Nuclear antisense effects of neutral, anionic and cationic oligonucleotide analogs. Nucleic Acids Res 29: 3965–3974PubMedGoogle Scholar
  81. Schmajuk G, Sierakowska H, Kole R (1999) Antisense oligonucleotides with different backbones. Modification of splicing pathways and efficacy of uptake. J Biol Chem 274: 21783–21789Google Scholar
  82. Schmucker D, Clemens JC, Shu H, Worby CA, Xiao J, Muda M, Dixon JE, Zipursky SL (2000) Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 101: 671–684Google Scholar
  83. Schwartz E, Benz E (1995) Thalassemia syndromes._In: Hoffman R, Benz E, Shattil S, Furie B, Cohen H, Silberstein L, McGlave P (eds) Hematology: basic principles and practice. Churchill Livingston, New YorkGoogle Scholar
  84. Sierakowska H, Sambade MJ, Agrawal S, Kole R (1996) Repair of thalassemic human beta-globin mRNA in mammalian cells by antisense oligonucleotides. Proc Natl Acad Sci USA 93: 12840–12844Google Scholar
  85. Sierakowska H, Sambade MJ, Schumperli D, Kole R (1999) Sensitivity of splice sites to antisense oligonucleotides in vivo. RNA 5: 369–377PubMedCrossRefGoogle Scholar
  86. Simons RW, Kleckner N (1988) Biological regulation by antisense RNA in prokaryotes. Annu Rev Genet 22: 567–600PubMedCrossRefGoogle Scholar
  87. Spritz RA, Jagadeeswaran P, Choudary PV, Biro PA, Elder JT, deRiel JK, Manley JL, Gefter ML, Forget BG, Weissman SM (1981) Base substitution in an intervening sequence of a beta+thalassemic human globin gene. Proc Natl Acad Sci USA 78: 2455–2459PubMedCrossRefGoogle Scholar
  88. Stein D, Foster E, Huang SB, Weller D, Summerton J (1997) A specificity comparison of four anti-sense types: morpholino, 2’-O-methyl RNA, DNA, and phosphorothioate DNA. Antisense Nucleic Acid Drug Dev 7: 151–157Google Scholar
  89. Summerton J (1999) Morpholino antisense oligomers: the case for an RNase H-independent structural type. Biochim Biophys Acta 1489: 141–158PubMedCrossRefGoogle Scholar
  90. Summerton J, Stein D, Huang SB, Matthews P, Weller D, Partridge M (1997) Morpholino and phosphorothioate antisense oligomers compared in cell-free and in-cell systems. Antisense Nucleic Acid Drug Dev 7: 63–70PubMedCrossRefGoogle Scholar
  91. Taylor JK, Zhang QQ, Wyatt JR, Dean NM (1999) Induction of endogenous Bc1-xS through the control of Bd-x pre-mRNA splicing by antisense oligonucleotides. Nat Biotechnol 17: 1097–1100PubMedCrossRefGoogle Scholar
  92. Teplova M, Wallace ST, Tereshko V, Minasov G, Symons AM, Cook PD, Manoharan M, Egli M (1999) Structural origins of the exonuclease resistance of a zwitterionic RNA. Proc Natl Acad Sci USA 96: 14240–14245PubMedCrossRefGoogle Scholar
  93. Thanaraj TA, Robinson AJ (2000) Prediction of exact boundaries of exons. Brief Bioinform 1: 343–356PubMedCrossRefGoogle Scholar
  94. Torigoe H, Hari Y, Sekiguchi M, Obika S, Imanishi T (2001) 2’-0,4’-C-methylene bridged nucleic acid modification promotes pyrimidine motif triplex DNA formation at physiological pH. Thermodynamic and kinetic studies. J Biol Chem 276: 2354–2360Google Scholar
  95. Tsui LC (1992) The spectrum of cystic fibrosis mutations. Trends Genet 8: 392–398PubMedGoogle Scholar
  96. Valadkhan S, Manley JL (2001) Splicing-related catalysis by protein-free snRNAs. Nature 413: 701–707PubMedCrossRefGoogle Scholar
  97. van Deutekom JC, Bremmer-Bout M, Janson AA, Ginjaar IB, Baas F, den Dunnen JT, van Ommen GJ (2001) Antisense-induced exon skipping restores dystrophin expression in DMD patient derived muscle cells. Hum Mol Genet 10: 1547–1554PubMedCrossRefGoogle Scholar
  98. Wang L, Gryaznov S, Nerenberg M (1999) Inhibition of IL-6 in mice by anti-NF-kappaB oligodeoxyribonucleotide N3’-oligodeoxyribonnucleotide N3’-*P5’ phosphoramidates. Inflammation 23: 583–590PubMedCrossRefGoogle Scholar
  99. Wilton SD, Lloyd F, Carville K, Fletcher S, Honeyman K, Agrawal S, Kole R (1999) Specific removal of the nonsense mutation from the mdx dystrophin mRNA using antisense oligonucleotides. Neuromuscular Disord 9: 330–338CrossRefGoogle Scholar
  100. Zamecnik PC, Stephenson ML (1978) Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci USA 75: 280–284PubMedCrossRefGoogle Scholar
  101. Zelphati O, Szoka FC Jr (1996) Mechanism of oligonucleotide release from cationic liposomes. Proc Natl Acad Sci USA 93: 11493–11498PubMedCrossRefGoogle Scholar
  102. Zhang H, Cook J, Nickel J, Yu R, Stecker K, Myers K, Dean NM (2000) Reduction of liver Fas expression by an antisense oligonucleotide protects mice from fulminant hepatitis. Nat Biotechnol 18: 862–867PubMedCrossRefGoogle Scholar
  103. Zhuang Y, Weiner AM (1989) A compensatory base change in human U2 snRNA can suppress a branch site mutation. Genes Dev 3: 1545–1552PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • P. Sazani
  • R. Kole
    • 1
  1. 1.Lineberger Comprehensive Cancer Center and Department of PharmacologyUniversity of North CarolinaChapel HillUSA

Personalised recommendations