Skip to main content

Splicing Regulation in Drosophila Sex Determination

  • Chapter
Regulation of Alternative Splicing

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 31))

Abstract

Posttranscriptional regulation is of fundamental importance for establishing the gene expression programs that determine sexual identity in the fruitfly Drosophila melanogaster. The protein Sex-lethal acts as a master regulatory switch, being expressed exclusively in female flies and inducing female-specific patterns of alternative splicing on target genes. As a consequence, other regulatory factors are expressed in a sex-specific manner, and these factors control somatic and germline sexual differentiation, sexual behavior and X chromosome dosage compensation. Here, we review the molecular mechanisms responsible for splicing regulation in Drosophila sexual determination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albrecht EB, Salz HK (1993) The Drosophila sex determination gene snf is utilized for the establishment of the female-specific splicing pattern of Sex-lethal. Genetics 134: 801–807

    PubMed  CAS  Google Scholar 

  • Amrein H (2000) Multiple RNA-protein interactions in Drosophila dosage compensation. Genome Biol 1: 1030.1–1030. 5

    Google Scholar 

  • Amrein H, Gorman M, Nothiger R (1988) The sex-determining gene tra-2 of Drosophila encodes a putative RNA binding protein. Cell 55: 1025–1035

    PubMed  CAS  Google Scholar 

  • Amrein H, Hedley M, Maniatis T (1994) The role of specific protein-RNA and protein-protein interactions in positive and negative control of pre-mRNA splicing by Transformer-2. Cell 76: 735–746

    PubMed  CAS  Google Scholar 

  • Anand A, Villella A, Ryner LC, Carlo T, Goodwin SF, Song HJ, Gailey DA, Morales A, Hall JC, Baker BS, Taylor BJ (2001) Molecular genetic dissection of the sex-specific and vital functions of the Drosophila melanogaster sex determination gene fruitless. Genetics 158: 1569–1595

    PubMed  CAS  Google Scholar 

  • Bashaw GJ, Baker BS (1996) Dosage compensation and chromatin structure in Drosophila. Curr Opin Genet Dev 6: 496–501

    PubMed  CAS  Google Scholar 

  • Bashaw G, Baker B (1997) The regulation of the Drosophila msl-2 gene reveals a function for Sex-lethal in translational control. Cell 89: 789–798

    PubMed  CAS  Google Scholar 

  • Bell LR, Maine EM, Schedl P, Cline TW (1988) Sex-lethal, a Drosophila sex determination switch gene, exhibits sex-specific RNA splicing and sequence similarity to RNA binding proteins. Cell 55: 1037–1046

    PubMed  CAS  Google Scholar 

  • Bell LR, Horabin JI, Schedl P, Cline TW (1991) Positive autoregulation of sex-lethal by alternative splicing maintains the female determined state in Drosophila. Cell 65: 229–39

    PubMed  CAS  Google Scholar 

  • Berget SM, Moore C, Sharp PA (1977) Spliced segments at the 5’ terminus of adenovirus 2 late mRNA. Proc Natl Acad Sci USA 74: 3171–3175

    PubMed  CAS  Google Scholar 

  • Blencowe BJ (2000) Exonic splicing enhancers: mechanism of action, diversity and role in human genetic diseases. Trends Biochem Sci 25: 106–110

    PubMed  CAS  Google Scholar 

  • Boggs R, Gregor P, Idriss, S, Belote, J, McKeown M (1987) Regulation of sexual differentiation in D. melanogaster via alternative splicing of RNA from the transformer gene. Cell 50: 739–747

    PubMed  CAS  Google Scholar 

  • Bopp D, Bell LR, Cline TW, Schedl P (1991) Developmental distribution of female-specific Sex-lethal proteins in Drosophila melanogaster. Genes Dev 5: 403–415

    PubMed  CAS  Google Scholar 

  • Bopp D, Calhoun G, Horabin JI, Samuels M, Schedl P (1996) Sex-specific control of Sex-lethal is a conserved mechanism for sex determination in the genus Drosophila. Development 122: 971–982

    PubMed  CAS  Google Scholar 

  • Brand S, Bourbon H (1993) The developmentally regulated Drosophila gene rox8 encodes an RRM-type RNA binding protein structurally related to human TIA-1-type nucleolysins. Nucleic Acids Res 21: 3699–3704

    PubMed  CAS  Google Scholar 

  • Breathnach R, Mantei N, Chambon P (1980) Corrected splicing of a chicken ovalbumin gene transcript in mouse L cells. Proc Natl Acad Sci USA 77: 740–744

    PubMed  CAS  Google Scholar 

  • Burnette JM, Hatton AR, Lopez AJ (1999) Trans-acting factors required for inclusion of regulated exons in the Ultrabithorax mRNAs of Drosophila melanogaster. Genetics 151: 1517–1529

    PubMed  CAS  Google Scholar 

  • Burtis K, Baker B (1989) Drosophila double-sex gene controls somatic sexual differentiation by producing alternatively spliced mRNAs encoding related sex-specific polypeptides. Cell 56: 997–1010

    Google Scholar 

  • Chandler D, McGuffin ME, Piskur J, Yao J, Baker BS, Mattox W (1997) Evolutionary conservation of regulatory strategies for the sex determination factor transformer-2. Mol Cell Biol 17: 2908–2919

    PubMed  CAS  Google Scholar 

  • CM SW, Muto Y, Inoue M, Kim I, Sakamoto H, Shimura Y, Yokoyama S, Choi BS, Kim H (1999) Chemical shift perturbation studies of the interactions of the second RNA-binding domain of the Drosophila sex-lethal protein with the transformer pre-mRNA polyuridine tract and 3’ splice-site sequences. Eur J Biochem 260: 649–660

    Google Scholar 

  • Chow LT, Broker TR (1978) The spliced structures of adenovirus 2 fiber message and the other late mRNAs. Cell 15: 497–510

    PubMed  CAS  Google Scholar 

  • Cline TW (1993) The Drosophila sex determination signal: how do flies count to two? Trends Genet 9: 385–390

    PubMed  CAS  Google Scholar 

  • Cline TW, Meyer BJ (1996) Vive la difference: males vs. females in flies vs. worms. Annu Rev Genet 30: 637–702

    PubMed  CAS  Google Scholar 

  • Dauwalder B, Mattox W (1998) Analysis of the functional specificity of RS domains in vivo. EMBO J 17: 6049–6060

    PubMed  CAS  Google Scholar 

  • Dauwalder B, Amaya-Manzanares F, Mattox W (1996) A human homologue of the Drosophila sex determination factor transformer-2 has conserved splicing regulatory functions. Proc Natl Acad Sci USA 93: 9004–9009

    PubMed  CAS  Google Scholar 

  • DeNoto FM, Moore DD, Goodman HM (1981) Human growth hormone DNA sequence and mRNA structure: possible alternative splicing. Nucleic Acids Res 9: 3719–3730

    PubMed  CAS  Google Scholar 

  • Deshpande G, Samuels M, Schedl P (1996) Sex-lethal interacts with splicing factors in vitro and in vivo. Mol Cell Biol 16: 5036–5047

    PubMed  CAS  Google Scholar 

  • Deshpande G, Calhoun G, Schedl PD (1999) The N-terminal domain of Sxl protein disrupts Sxl autoregulation in females and promotes female-specific splicing of tra in males. Development 126: 2841–2853

    PubMed  CAS  Google Scholar 

  • Du C, McGuffin ME, Dauwalder B, Rabinow L, Mattox W (1998) Protein phosphorylation plays an essential role in the regulation of alternative splicing and sex determination in Drosophila. Mol Cell 2: 741–750

    PubMed  CAS  Google Scholar 

  • Estes PA, Keyes LN, Schedl P (1995) Multiple response elements in the Sex-lethal early promoter ensure its female-specific expression pattern. Mol Cell Biol 15: 904–917

    PubMed  CAS  Google Scholar 

  • Fleckner J, Zhang M, Valcarcel J, Green MR (1997) U2AF65 recruits a novel human DEAD box protein required for the U2 snRNP-branchpoint interaction. Genes Dev 11: 1864–1872

    PubMed  CAS  Google Scholar 

  • Flickinger TW, Salz HK (1994) The Drosophila sex determination gene snf encodes a nuclear protein with sequence and functional similarity to the mammalian U1A snRNP protein. Genes Dev 8: 914–925

    PubMed  CAS  Google Scholar 

  • Förch P, Puig O, Kedersha N, Martinez C, Granneman S, Seraphin B, Anderson P, Valcarcel J (2000) The apoptosis-promoting factor TIA-1 is a regulator of alternative pre-mRNA splicing. Mol Cell 6: 1089–1098

    PubMed  Google Scholar 

  • Förch P, Merendino L, Martinez C, Valcarcel J (2001) Modulation of msl-2 5’ splice site recognition by Sex-lethal. RNA 7: 1185–1191

    PubMed  Google Scholar 

  • Fu X-D (1995) The superfamily of arginine/serine-rich splicing factors. RNA 1: 663–680

    PubMed  CAS  Google Scholar 

  • Gebauer F, Merendino L, Hentze MW, Valcarcel J (1997) Novel functions for ‘nuclear factors’ in the cytoplasm: the Sex-lethal paradigm. Semin Cell Dev Biol 8: 561–566

    PubMed  CAS  Google Scholar 

  • Gebauer F, Merendino L, Hentze M, Valcarcel J (1998) The Drosophila splicing regulator Sex-lethal directly inhibits translation of male-specific-lethal 2 mRNA. RNA 4: 142–150

    PubMed  CAS  Google Scholar 

  • Gebauer F, Corona DF, Preiss T, Becker PB, Hentze MW (1999) Translational control of dosage compensation in Drosophila by Sex-lethal: cooperative silencing via the 5’ and 3’ UTRs of msl-2 mRNA is independent of the poly(A) tail. EMBO J 18: 6146–6154

    PubMed  CAS  Google Scholar 

  • Goralski TJ, Edstrom JE, Baker BS (1989) The sex determination locus transformer-2 of Drosophila encodes a polypeptide with similarity to RNA binding proteins. Cell 56: 1011–1018

    PubMed  CAS  Google Scholar 

  • Granadino B, Campuzano S, Sanchez L (1990) The Drosophila melanogaster fl(2)d gene is needed for the female-specific splicing of Sex-lethal. EMBO J 9: 2597–2602

    PubMed  CAS  Google Scholar 

  • Granadino B, Penalva LO, Green MR, Valcarcel J, Sanchez L (1997) Distinct mechanisms of splicing regulation in vivo by the Drosophila protein Sex-lethal. Proc Natl Acad Sci USA 94: 7343–7348

    PubMed  CAS  Google Scholar 

  • Guth S, Tange TO, Kellenberger E, Valcarcel J (2001) Dual function for U2AF(35) in AG-dependent pre-mRNA splicing. Mol Cell Biol 21: 7673–7681

    PubMed  CAS  Google Scholar 

  • Handa N, Nureki O, Kurimoto K, Kim I, Sakamoto H, Shimura Y, Muto Y, Yokoyama S(1999) Structural basis for recognition of the tra mRNA precursor by the Sex-lethal protein. Nature 398: 579–585

    Google Scholar 

  • Hastings ML, Krainer AR (2001) Pre-mRNA splicing in the new millennium. Curr Opin Cell Biol 13: 302–309

    PubMed  CAS  Google Scholar 

  • Hazelrigg T, Tu C (1994) Sex-specific processing of the Drosophila exuperantia transcript is regulated in male germ cells by the tra-2 gene. Proc Natl Acad Sci USA 91: 10752–10756

    PubMed  CAS  Google Scholar 

  • Hazelrigg T, Watkins WS, Marcey D, Tu C, Karow M, Lin XR (1990) The exuperantia gene is required for Drosophila spermatogenesis as well as anteroposterior polarity of the developing oocyte, encodes overlapping sex-specific transcripts. Genetics 126: 607–617

    PubMed  CAS  Google Scholar 

  • Hedley M, Maniatis T (1991) Sex-specific splicing and polyadenylation of dsx pre-mRNA requires a sequence that binds specifically to tra-2 protein in vitro. Cell 65: 579–586

    PubMed  CAS  Google Scholar 

  • Heinrichs V, Baker BS (1995) The Drosophila SR protein RBP1 contributes to the regulation of doublesex alternative splicing by recognizing RBP1 RNA target sequences. EMBO J 14: 3987–4000

    PubMed  CAS  Google Scholar 

  • Heinrichs V, Ryner LC, Baker BS (1998) Regulation of sex-specific selection of fruitless 5’ splice sites by transformer and transformer-2. Mol Cell Biol 18: 450–458

    PubMed  CAS  Google Scholar 

  • Hilfiker A, Amrein H, Dubendorfer A, Schneiter R, Nothiger R (1995) The gene virilizer is required for female-specific splicing controlled by Sxl, the master gene for sexual development in Drosophila. Development 121: 4017–4026

    PubMed  CAS  Google Scholar 

  • Horabin J, Schedl P (1993a) Sex-lethal autoregulation requires multiple cis-acting elements upstream and downstream of the male exon and appears to depend largely on controlling the use of the male exon 5’ splice site. Mol Cell Biol 13: 7734–7746

    PubMed  CAS  Google Scholar 

  • Horabin JI, Schedl P (1993b) Regulated splicing of the Drosophila sex-lethal male exon involves a blockage mechanism. Mol Cell Biol 13: 1408–1414

    PubMed  CAS  Google Scholar 

  • Hoshijima K, Inoue K, Higuchi I, Sakamoto H, Shimura Y (1991) Control of doublesex alternative splicing by transformer and transformer-2 in Drosophila. Science 252: 833–836

    PubMed  CAS  Google Scholar 

  • Inoue K, Hoshijima H, Sakamoto H, Shimura Y (1990) Binding of the Drosophila Sex-lethal gene product to the alternative splice site of transformer primary transcript. Nature 344: 461463

    Google Scholar 

  • Inoue K, Hoshijima K, Higuchi I, Sakamoto H, Shimura Y (1992) Binding of the Drosophila transformer and transformer-2 proteins to the regulatory elements of doublesex primary transcript for sex-specific RNA processing. Proc Natl Acad Sci USA 89: 8092–8096

    PubMed  CAS  Google Scholar 

  • Ito H, Fujitani K, Usui K, Shimizu-Nishikawa K, Tanaka S, Yamamoto D (1996) Sexual orientation in Drosophila is altered by the satori mutation in the sex-determination gene fruitless that encodes a zinc finger protein with a BTB domain. Proc Natl Acad Sci USA 93: 9687–9692

    PubMed  CAS  Google Scholar 

  • Kan J, Green M (1999) Pre-mRNA splicing of IgM exons M1 and M2 is directed by a juxtaposed splicing enhancer and inhibitor. Genes Dev. 13: 462–471

    PubMed  CAS  Google Scholar 

  • Kanaar R, Lee A, Rudner D, Wemmer D, Rio D (1995) Interaction of the Sex-lethal RNA binding domains with RNA. EMBO J 14: 4530–4539

    PubMed  CAS  Google Scholar 

  • Kanopka A, Muhlemann O, Petersen-Mahrt S, Estmer C, Ohrmalm C, Akusjarvi G (1998) Regulation of adenovirus alternative RNA splicing by dephosphorylation of SR proteins. Nature 393: 185–187

    PubMed  CAS  Google Scholar 

  • Kelley R, Solovyeva I, Lyman L, Richman R, Solovyev V, Kuroda M (1995) Expression of Ms1–2 causes assembly of dosage compensation regulators on the X chromosomes and female lethality in Drosophila. Cell 81: 867–877

    PubMed  CAS  Google Scholar 

  • Kelley R, Wang J, Bell L, Kuroda M (1997) Sex-lethal controls dosage compensation in Drosophila by a non-splicing mechanism. Nature 387: 195–199

    PubMed  CAS  Google Scholar 

  • Kelley RL, Kuroda MI (2000) The role of chromosomal RNAs in marking the X for dosage compensation. Curr Opin Genet Dev 10: 555–561

    PubMed  CAS  Google Scholar 

  • Keyes LN, Cline TW, Schedl P (1992) The primary sex determination signal of Drosophila acts at the level of transcription. Cell 68: 933–943

    PubMed  CAS  Google Scholar 

  • Kim I, Muto Y, Watanabe S, Kitamura A, Futamura Y, Yokoyama S, Hosono K, Kawai G, Takaku H, Dohmae N, Takio K, Saskamoto H, Shimura Y (2000) Interactions of a didomain fragment of the Drosophila sex-lethal protein with single-stranded uridine-rich oligoribonucleotides derived from the transformer and Sex-lethal messenger RNA precursors: NMR with residue-selective [5–2H]uridine substitutions. J Biomol NMR 17: 153–165

    PubMed  CAS  Google Scholar 

  • King CR, Piatigorsky J (1983) Alternative RNA splicing of the murine alpha A-crystallin gene: protein-coding information within an intron. Cell 32: 707–712

    PubMed  CAS  Google Scholar 

  • Lallena MJ, Chalmers KS, Leamazares S, Lamand AI, Valcârcel J (2002) Splicing regulation at the second catalytic step by sex-lethal involves 3’ splice site recognition by SPF45. Cell 109: 285–296

    PubMed  CAS  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann N, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M et al. (2001) Initial sequencing and analysis of the human genome. Nature 409: 860–921

    PubMed  CAS  Google Scholar 

  • Lavigueur A, LaBranche H, Kornblihtt A, Chabot B (1993) A splicing enhancer in the human fibronectin alternate ED1 exon interacts with SR proteins and stimulates U2 snRNP binding. Genes Dev 7: 2405–2417

    PubMed  CAS  Google Scholar 

  • Lee AL, Kanaar R, Rio DC, Wemmer DE (1994) Resonance assignments and solution structure of the second RNA-binding domain of sexlethal determined by multidimensional heteronuclear magnetic resonance. Biochemistry 33: 13775–13786

    PubMed  CAS  Google Scholar 

  • Lee AL, Volkman BF, Robertson SA, Rudner DZ, Barbash DA, Cline TW, Kanaar R, Rio DC, Wemmer DE. (1997) Chemical shift mapping of the RNA-binding interface of the multipleRBD protein sex-lethal. Biochemistry 36: 14306–14317

    PubMed  CAS  Google Scholar 

  • Lopez AJ (1995) Developmental role of transcription factor isoforms generated by alternative splicing. Dev Biol 172: 396–411

    PubMed  CAS  Google Scholar 

  • Lopez AJ (1998) Alternative splicing of pre-mRNA: developmental consequences and mechanisms of regulation. Annu Rev Genet 32: 279–305

    PubMed  CAS  Google Scholar 

  • Lynch KW, Maniatis T (1995) Synergistic interactions between two distinct elements of a regulated splicing enhancer. Genes Dev 9: 284–293

    PubMed  CAS  Google Scholar 

  • Lynch KW, Maniatis T (1996) Assembly of specific SR protein complexes on distinct regulatory elements of the Drosophila doublesex splicing enhancer. Genes Dev 10: 2089–20101

    PubMed  CAS  Google Scholar 

  • MacDougall C, Harbison D, Bownes M (1995) The developmental consequences of alternate splicing in sex determination and differentiation in Drosophila. Dev Biol 172: 353–376

    PubMed  CAS  Google Scholar 

  • Manley J, Tacke R (1996) SR proteins and splicing control. Genes Dev 10: 1569–1579 Maquat LE, Carmichael GG (2001) Quality control of mRNA function. Cell 104: 173–176

    Google Scholar 

  • Mariman EC, van Beek-Reinders RJ, van Venrooij WJ (1983) Alternative splicing pathways exist in the formation of adenoviral late messenger RNAs. J Mol Biol 163: 239–256

    PubMed  CAS  Google Scholar 

  • Marin I, Siegal ML, Baker BS (2000) The evolution of dosage-compensation mechanisms. Bioessays 22: 1106–1114

    PubMed  CAS  Google Scholar 

  • Mattox W, Baker BS (1991) Autoregulation of the splicing of transcripts from the transformer-2 gene of Drosophila. Genes Dev 5: 786–796

    PubMed  CAS  Google Scholar 

  • Mattox W, Palmer MJ, Baker BS (1990) Alternative splicing of the sex determination gene transformer-2 is sex-specific in the germ line but not in the soma. Genes Dev 4: 789–805

    PubMed  CAS  Google Scholar 

  • Mattox W, McGuffin ME, Baker BS (1996) A negative feedback mechanism revealed by functional analysis of the alternative isoforms of the Drosophila splicing regulator transformer-2. Genetics 143: 303–314

    PubMed  CAS  Google Scholar 

  • McGuffin ME, Chandler D, Somaiya D, Dauwalder B, Mattox W (1998) Autoregulation of transformer-2 alternative splicing is necessary for normal male fertility in Drosophila. Genetics 149: 1477–1486

    PubMed  CAS  Google Scholar 

  • McKeown M, Belote JM, Baker BS (1987) A molecular analysis of transformer, a gene in Drosophila melanogaster that controls female sexual differentiation. Cell 48: 489–499

    PubMed  CAS  Google Scholar 

  • Meise M, Hilfiker-Kleiner D, Dubendorfer A, Brunner C, Nothiger R, Bopp D (1998) Sex-lethal, the master sex-determining gene in Drosophila, is not sex-specifically regulated in Musca domestica. Development 125: 1487–1494

    PubMed  CAS  Google Scholar 

  • Merendino L, Guth S, Bilbao D, Martinez C, Valcarcel J (1999) Inhibition of msl-2 splicing by Sex-lethal reveals interaction between U2AF35 and the 3’ splice site AG. Nature 402: 838–841 Modrek B, Lee C (2002) A genomic view of alternative splicing. Nat Genet 30: 13–19

    Google Scholar 

  • Nagai K, Oubridge C, Jessen T, Li J, Evans P (1990) Crystal structure of the RNA-binding domain of the U1 small nuclear ribonucleoprotein A. Nature 348: 515–520

    PubMed  CAS  Google Scholar 

  • Nagoshi R, McKeown M, Burtis K, Belote J, Baker B (1988) The control of alternative splicing at genes regulating sexual differentiation in D. melanogaster. Cell 53: 229–236

    PubMed  CAS  Google Scholar 

  • Neubauer G, King A, Rappsilber J, Calvio C, Watson M, Ajuh P, Sleeman J, Lamond A, Mann M (1998) Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex. Nat Genet 20: 46–50

    PubMed  CAS  Google Scholar 

  • Niessen M, Schneiter R, Nothiger R (2001) Molecular identification of virilizer, a gene required for the expression of the sex-determining gene Sex-lethal in Drosophila melanogaster. Genetics 157: 679–688

    PubMed  CAS  Google Scholar 

  • Ohbayashi F, Suzuki MG, Mita K, Okano K, Shimada T (2001) A homologue of the Drosophila doublesex gene is transcribed into sex-specific mRNA isoforms in the silkworm, Bombyx mori. Comp Biochem Physiol B Biochem Mol Biol 128: 145–158

    PubMed  CAS  Google Scholar 

  • Pannuti A, Lucchesi JC (2000) Recycling to remodel: evolution of dosage-compensation complexes. Curr Opin Genet Dev 10: 644–650

    PubMed  CAS  Google Scholar 

  • Penalva LO, Ruiz MF, Ortega A, Granadino B, Vicente L, Segarra C, Valcarcel J, Sanchez L (2000) The Drosophila fl(2)d gene, required for female-specific splicing of Sxl and tra pre-mRNAs, encodes a novel nuclear protein with a HQ-rich domain. Genetics 155: 129–139

    PubMed  CAS  Google Scholar 

  • Penalva LO, Lallena MJ, Valcarcel J (2001) Switch in 3’ splice site recognition between exon definition and splicing catalysis is important for sex-lethal autoregulation. Mol Cell Biol 21: 1986–1996

    PubMed  CAS  Google Scholar 

  • Polycarpou-Schwarz M, Gunderson SI, Kandels-Lewis S, Seraphin B, Mattaj IW (1996) Drosophila SNF/D25 combines the functions of the two snRNP proteins U1A and U2B’ that are encoded separately in human, potato, yeast. RNA 2: 11–23

    Google Scholar 

  • Ramchatesingh J, Zahler A, Neugebauer K, Roth M, Cooper T (1995) A subset of SR proteins activates splicing of the cardiac troponin T alternative exon by direct interactions with an exonic enhancer. Mol Cell Biol. 15: 4898–4907

    PubMed  CAS  Google Scholar 

  • Reed R (2000) Mechanisms of fidelity in pre-mRNA splicing. Curr Opin Cell Biol 12: 340–345

    PubMed  CAS  Google Scholar 

  • Rudner D, Kanaar R, Breger K, Rio D (1998) Interaction between subunits of heterodimeric splicing factor U2AF is essential in vivo. Mol Cell Biol 18: 1765–1773

    PubMed  CAS  Google Scholar 

  • Ruskin B, Zamore P, Green M (1988) A factor, U2AF, is required for U2 snRNP binding and splicing complex assembly. Cell 52: 207–219

    PubMed  CAS  Google Scholar 

  • Ryner L, Baker B (1991) Regulation of doublesex pre-mRNA processing occurs by 3’ splice site activation. Genes Dev 5: 2071–2085

    PubMed  CAS  Google Scholar 

  • Ryner L, Goodwin S, Castrillon D, Anand A, Villella A, Baker B, Hall J, Taylor B, Wasserman S (1997) Control of male sexual behavior and sexual orientation in Drosophila by the fruitless gene. Cell 87: 1079–1089

    Google Scholar 

  • Saccone G, Peluso I, Artiaco D, Giordano E, Bopp D, Polito LC (1998) The Ceratitis capitata homologue of the Drosophila sex-determining gene sex-lethal is structurally conserved, but not sex-specifically regulated. Development 125: 1495–1500

    PubMed  CAS  Google Scholar 

  • Sakamoto H, Inoue K, Higuchi I, Ono Y, Shimura Y (1992) Control of Drosophila Sex-lethal premRNA splicing by its own female-specific product. Nucleic Acids Res 20: 5533–5540

    PubMed  CAS  Google Scholar 

  • Sakashita E, Sakamoto H (1994) Characterization of RNA binding specificity of the Drosophila sex-lethal protein by in vitro ligand selection. Nucleic Acids Res 22: 4082–4086

    PubMed  CAS  Google Scholar 

  • Salz HK (1992) The genetic analysis of snf: a Drosophila sex determination gene required for activation of Sex-lethal in both the germline and the soma. Genetics 130: 547–554

    PubMed  CAS  Google Scholar 

  • Salz HK, Flickinger TW (1996) Both loss-of-function and gain-of-function mutations in snf define a role for snRNP proteins in regulating Sex-lethal pre-mRNA splicing in Drosophila development. Genetics 144: 95–108

    PubMed  CAS  Google Scholar 

  • Salz HK, Maine EM, Keyes LN, Samuels ME, Cline TW, Schedl P (1989) The Drosophila female-specific sex-determination gene, Sex-lethal, has stage-, tissue-, sex-specific RNAs suggesting multiple modes of regulation. Genes Dev 3: 708–719

    Google Scholar 

  • Samuels ME, Schedl P, Cline TW (1991) The complex set of late transcripts from the Drosophila sex determination gene sex-lethal encodes multiple related polypeptides. Mol Cell Biol 11: 3584–3602

    PubMed  CAS  Google Scholar 

  • Samuels M, Bopp D, Colvin R, Roscigno R, Gracia-Blanco M, Schedl P (1994) RNA binding by Sxl proteins in vitro and in vivo. Mol Cell Biol 14: 4975–4990

    PubMed  CAS  Google Scholar 

  • Samuels M, Deshpande G, Schedl P (1998) Activities of the Sex-lethal protein in RNA binding and protein: protein interactions. Nucleic Acids Res 26: 2625–2637

    PubMed  CAS  Google Scholar 

  • Schaal T, Maniatis T (1999a) Selection and characterization of pre-mRNA splicing enhancers: identification of novel sr protein-specific enhancer sequences. Mol Cell Biol 19: 1705–1719

    PubMed  CAS  Google Scholar 

  • Schaal TD, Maniatis T (1999b) Multiple distinct splicing enhancers in the protein-coding

    Google Scholar 

  • sequences of a constitutively spliced pre-mRNA. Mol Cell Biol 19: 261–273

    Google Scholar 

  • Schmucker D, Clemens JC, Shu H, Worby CA, Xiao J, Muda M, Dixon JE, Zipursky SL (2000) Drosophila D scam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 101: 671–684

    Google Scholar 

  • Schutt C, Nöthiger R (2000) Structure, function and evolution of sex-determining systems in Dipteran insects. Development 127: 667–677

    PubMed  CAS  Google Scholar 

  • Sievert V, Kuhn S, Paululat A, Traut W (2000) Sequence conservation and expression of the sex-lethal homologue in the fly Megaselia scalaris. Genome 43: 382–390

    PubMed  CAS  Google Scholar 

  • Singh R, Valcarcel J, Green M (1995) Distinct binding specificities and functions of higher eukaryotic polypyrimidine tract-binding proteins. Science 268: 1173–1176

    PubMed  CAS  Google Scholar 

  • Singh R, Banerjee H, Green MR (2000) Differential recognition of the polypyrimidine-tract by the general splicing factor U2AF65 and the splicing repressor sex-lethal. RNA 6: 901–911

    PubMed  CAS  Google Scholar 

  • Smith CW, Valcarcel J (2000) Alternative pre-mRNA splicing: the logic of combinatorial control. Trends Biochem Sci 25: 381–388

    PubMed  CAS  Google Scholar 

  • Sosnowski BA, Belote JM, McKeown M (1989) Sex-specific alternative splicing of RNA from the transformer gene results from sequence-dependent splice site blockage. Cell 58: 449–459

    PubMed  CAS  Google Scholar 

  • Sosnowski B, Davis D, Boggs R, Madigan S, McKeown M (1994) Multiple portions of a small region of the Drosophila transformer gene are required for efficient in vivo sex-specific regulated RNA splicing and in vitro Sex-lethal binding. Dev Biol 161: 302–312

    PubMed  Google Scholar 

  • Stitzinger SM, Pellicena-Palle A, Albrecht EB, Gajewski KM, Beckingham KM, Salz HK (1999a) Mutations in the predicted aspartyl tRNA synthetase of Drosophila are lethal and function as dosage-sensitive maternal modifiers of the sex determination gene Sex-lethal. Mol Gen Genet 261: 142–151

    PubMed  CAS  Google Scholar 

  • Stitzinger SM, Conrad TR, Zachlin AM, Salz HK (1999b) Functional analysis of SNF, the Drosophila U1A/U2B” homolog: identification of dispensable and indispensable motifs for both snRNP assembly and function in vivo. RNA 5: 1440–1450

    PubMed  CAS  Google Scholar 

  • Stojdl DF, Bell JC (1999) SR protein kinases: the splice of life. Biochem Cell Biol 77: 293–298

    PubMed  CAS  Google Scholar 

  • Sun Q, Mayeda A, Hampson R, Krainer A, Rottman F(1993) General splicing factor SF2/ASF promotes alternative splicing by binding to an exonic splicing enhancer. Genes Dev 7: 2598–2608

    Google Scholar 

  • Tacke R, Tohyama M, Ogawa S, Manley JL (1998) Human Tra2 proteins are sequence-specific activators of pre-mRNA splicing. Cell 93: 139–148

    PubMed  CAS  Google Scholar 

  • Tian M, Maniatis T (1992) Positive control of pre-mRNA splicing in vitro. Science 256: 237–240

    PubMed  CAS  Google Scholar 

  • Tian M, Maniatis T (1993) A splicing enhancer complex controls alternative splicing of double-sex pre-mRNA. Cell 74: 105–114

    PubMed  CAS  Google Scholar 

  • Tian M, Maniatis T (1994) A splicing enhancer exhibits both constitutive and regulated activities. Genes Dev 8: 1703–1712

    PubMed  CAS  Google Scholar 

  • Usui-Aoki K, Ito H, Ui-Tei K, Takahashi K, Lukacsovich T, Awano W, Nakata H, Piao ZF, Nilsson EE, Tomida J, Yamamoto D. (2000) Formation of the male-specific muscle in female Drosophila by ectopic fruitless expression. Nat Cell Biol 8: 500–506

    Google Scholar 

  • Valcarcel J, Green M (1996) The SR protein family: pleiotropic effects in pre-mRNA splicing. Trends Biochem. Sci. 21: 296–301

    Google Scholar 

  • Valcarcel J, Singh R, Zamore P, Green M (1993) The protein Sex-lethal antagonizes the splicing factor U2AF to regulate alternative splicing of transformer pre-mRNA. Nature 362: 171175

    Google Scholar 

  • Valcârcel J, Martinez C, Green M (1997) Functional analysis of splicing factors and regulators. In: Richter JD (ed) mRNA formation and function. Academic Press, New York, pp 31–53

    Google Scholar 

  • Varani G, Nagai K (1998) RNA recognition by RNP proteins during RNA processing. Annu Rev Biophys Biomol Struct 27: 407–445

    PubMed  CAS  Google Scholar 

  • Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, McKusick VA, Zinder N, Levine AJ, Roberts RJ, Simon M, Slayman C, Hunkapiller M, Bolanos R, Delcher A, Dew I, Fasulo D, Flanigan M, Florea L, Halpern A, Hannenhalli S, Kravitz S, Levy S, Mobarry C, Reinert K, Remington K, AbuThreideh J, Beasley E, Biddick K, Bonazzi V, Brandon R, Cargill M, Chandramouliswaran I, Charlab R, Chaturvedi K, Deng Z, Di Francesco V, Dunn P, Eilbeck K, Evangelista C, Gabrielian AE, Gan W, Ge W, Gong F, Gu Z, Guan P, Heiman TJ, Higgins ME, Ji RR, Ke Z, Ketchum KA, Lai Z, Lei Y, Li Z, Li J, Liang Y, Lin X, Lu F, Merkulov GV, Milshina N, Moore HM, Naik AK, Narayan VA, Neelam B, Nusskern D, Rusch DB, Salzberg S, Shao W, Shue B, Sun J, Wang Z, Wang A, Wang X, Wang J, Wei M, Wides R, Xiao C, Yan C et al. (2001) The sequence of the human genome. Science 291: 1304–1351

    PubMed  CAS  Google Scholar 

  • Wang J, Bell L (1994) The Sex-lethal amino terminus mediates cooperative interactions in RNA binding and is essential for splicing regulation. Genes Dev 8: 2072–2085

    PubMed  CAS  Google Scholar 

  • Wang J, Dong Z, Bell LR (1997) Sex-lethal interactions with protein and RNA. Roles of glycine-rich and RNA binding domains. J Biol Chem 272: 22227–22235

    Google Scholar 

  • Watakabe A, Tanaka K, Shimura Y (1993) The role of exon sequences in splice site selection. Genes Dev 7: 407–418

    PubMed  CAS  Google Scholar 

  • Waterbury JA, Horabin JI, Bopp D, Schedl P (2000) Sex determination in the Drosophila germline is dictated by the sexual identity of the surrounding soma. Genetics 155: 1741–1756

    PubMed  CAS  Google Scholar 

  • Wu J, Maniatis T (1993) Specific interactions between proteins implicated in splice site selection and regulated alternative splicing. Cell 75: 1061–1070

    PubMed  CAS  Google Scholar 

  • Xu R, Teng J, Cooper T (1993) The cardiac troponin T alternative exon contains a novel purine-rich positive splicing element. Mol Cell Biol 13: 3660–3674

    PubMed  CAS  Google Scholar 

  • Yanowitz JL, Deshpande G, Calhoun G, Schedl PD (1999) An N-terminal truncation uncouples the sex-transforming and dosage compensation functions of sex-lethal. Mol Cell Biol 19: 3018–3028

    PubMed  CAS  Google Scholar 

  • Zamore P, Patton J, Green M (1992) Cloning and domain structure of the mammalian splicing factor U2AF. Nature 355: 609–614

    PubMed  CAS  Google Scholar 

  • Zhou S, Yang Y, Scott M, Pannuti A, Fehr K, Eisen A, Koonin E, Fouts D, Wrightsman R, Manning J, Lucchesi I (1995) Male-specific lethal 2: a dosage compensation gene of Drosophila, undergoes sex-specific regulation and encodes a protein with RING finger and a metallothioneinlike cystein cluster. EMBO J 14: 2884–2895

    PubMed  CAS  Google Scholar 

  • Zhu C, Urano J, Bell L (1997) The Sex-lethal early splicing pattern uses a default mechanism dependent on the alternative 5’ splice sites. Mol Cell Biol 17: 1674–1681

    PubMed  CAS  Google Scholar 

  • Zuo P, Maniatis T (1996) The splicing factor U2AF35 mediates critical protein-protein interactions in constitutive and enhancer-dependent splicing. Genes Dev 10: 1356–1368

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Förch, P., Valcárcel, J. (2003). Splicing Regulation in Drosophila Sex Determination. In: Jeanteur, P. (eds) Regulation of Alternative Splicing. Progress in Molecular and Subcellular Biology, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09728-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09728-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07858-3

  • Online ISBN: 978-3-662-09728-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics