Skip to main content
  • 108 Accesses

Abstract

The conjectured deformation of hadrons and its experimental verification offer a particularly fer­tile ground for understanding the intricate dynamics of their constituents and QCD at the confiment scale. The detailed study of the NΔ transition is viewed as the preferred method of experimental investigation of this central issue in hadronic physics. A brief overview of the field is presented, followed by a presentation of the most recent results from Bates NΔ program. The new Bates/OOPS data at Q 2 = 0.127(GeV/c)2 yield Rsm = (−6.27±0.32stat+sys ± 0.l0rode1)% and Rem = (−2.00±0.40stat+sys ± 0.27model)% and they exclude a spherical nucleon and/or Δ. The magnitude and the origin of the deformation is the focus of the ongoing and planned investigations.

Invited plenary talk

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Isgur, C. Karl, R. Koniuk Phys. Rev. D 25, 2394 (1982);

    Article  Google Scholar 

  2. S. Capstick, G. Karl, Phys. Rev. D 41, 2767 (1990).

    Article  Google Scholar 

  3. T. Sato, T.-S.H. Lee, Phys. Rev. C 54, 2660 (1996); Phys. Rev. C 63, 055201 (2001).

    Google Scholar 

  4. S.S. Kamalov, Shin Nan Yang, Phys. Rev. Lett. 83, 4494 (1999).

    Article  ADS  Google Scholar 

  5. C. Alexandrou et al. hep-lat/0206026; nucl-th/0212005 and private communication.

    Google Scholar 

  6. D.B. Leinweber, T. Draper, R.M. Woloshyn Phys. Rev. D 48, 2230 (1993).

    Article  Google Scholar 

  7. S.L. Glashow, Physica A 96, 27 (1979).

    Article  ADS  Google Scholar 

  8. G. Blanpied et al.,Phys. Rev. Lett. 79, 4337 (1997).

    Google Scholar 

  9. R. Beck et al.,Phys. Rev. Lett. 78, 606 (1997); Phys. Rev. C 61, 35204 (2000).

    Google Scholar 

  10. D. Drechsel, L. Tiator (Editors), Nstar2001, Proceedings of the Workshop on the Physics of Excited Nucleons, (World Scientific, 2001 ).

    Google Scholar 

  11. G.A. Warren et al., Phys. Rev. C 58, 3722 (1998).

    Google Scholar 

  12. C. Mertz et al.,Phys. Rev. Lett. 86, 2963 (2001).

    Google Scholar 

  13. H. Schmieden, in ref. [9].

    Google Scholar 

  14. Th. Pospischil et al.,Phys. Rev. Lett. 86, 2959 (2001).

    Google Scholar 

  15. R.W. Gothe, in ref. [9].

    Google Scholar 

  16. F. Kalleicher et al.,Z. Phys. A 359, 201 (1997).

    Google Scholar 

  17. V. Frolov et al.,Phys. Rev. Lett. 82, 45 (1999).

    Google Scholar 

  18. K. Joo et al.,Phys. Rev. Lett. 88, 122001 (2002).

    Google Scholar 

  19. N. Sparveris, University of Athens, Ph.D. Thesis, in preparation.

    Google Scholar 

  20. D. Drechsel, L. Tiator, J. Phys. G: Nucl. Part. Phys. 18, 449 (1992); A.S. Raskin, T.W. Donnelly, Ann. Phys. 191, 78.

    Google Scholar 

  21. C.E. Carlson, J.L. Poor Phys. Rev. D 38, 2758 (1988).

    Article  Google Scholar 

  22. R.M. Davidson et al., Phys. Rev. Lett. 56,804 (1986); Phys. Rev. D 43, 71 (1991); Phys. Lett. B 353, 131 (1995).

    Google Scholar 

  23. D. Drechsel et al.,Nucl. Phys. A 645, 145 (1999) and http://www.kph.uni-mainz.de/MAID/maid2000/.

    Google Scholar 

  24. S.S. Kamalov et al.,Phys.Rev. C 64, 032201 (2001).

    Google Scholar 

  25. B. Pasquini et al.,Eur. Phys. J. A 11, 185 (2001).

    Google Scholar 

  26. M. Vanderhaeghen, Nucl. Phys. A 595, 219 (1995).

    Article  Google Scholar 

  27. G.C. Gellas et al.,Phys. Rev. D 60, 054022 (1999).

    Google Scholar 

  28. S. Dolfini et al.,Nucl. Instrum. Methods A 344, 571 (1994).

    Google Scholar 

  29. J. Mandeville et al.,Nucl. Instrum. Methods A 344, 583 (1994).

    Google Scholar 

  30. C. Vellidis, University of Athens, Ph.D. Thesis, (2001): ISBN:960–8313–05–8.

    Google Scholar 

  31. Christian Kunz, MIT PhD Thesis, 1999, unpublished.

    Google Scholar 

  32. A.J. Buchmann et al.,Phys. Rev. C 55, 448 (1997); Phys. Rev. C 63, 015202 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Papanicolas, C.N. (2003). Nucleon deformation. In: Elster, C., Speth, J., Walcher, T. (eds) Refereed and selected contributions from International Conference on Quark Nuclear Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09712-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09712-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05843-1

  • Online ISBN: 978-3-662-09712-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics