Infrared exponents and the running coupling of Landau gauge QCD and their relation to confinement

  • R. Alkofer
  • C. S. Fischer
  • L. von Smekal
Conference paper


The infrared behaviour of the gluon and ghost propagators in Landau gauge QCD is reviewed. The Kugo-Ojima confinement criterion and the Gribov-Zwanziger horizon condition result from quite general properties of the ghost Dyson-Schwinger equation. The numerical solutions for the gluon and ghost propagators obtained from a truncated set of Dyson-Schwinger equations provide an explicit example for the anticipated infrared behaviour. The results are in good agreement with corresponding lattice data obtained recently. The resulting running-coupling approaches a fix point in the infrared, α(0) = 8.92/N c . Two different fits for the scale dependence of the running coupling are given and discussed.


Gluon Propagator Landau Gauge Truncation Scheme Infrared Behaviour Ghost Propagator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Kugo, I. Ojima, Prog. Theor. Phys. Suppl. 66, 1 (1979).MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    V.N. Gribov, Nucl. Phys. B 139, 1 (1978).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    D. Zwanziger, Nucl. Phys. B 364, 127 (1991);MathSciNetADSCrossRefGoogle Scholar
  4. D. Zwanziger, Nucl. Phys. B 399, 477 (1993);MathSciNetADSCrossRefGoogle Scholar
  5. D. Zwanziger, Nucl. Phys. B 412, 657 (1994).MathSciNetADSMATHCrossRefGoogle Scholar
  6. 4.
    T. Kugo, in Proceedings of the International Symposium on the BRS symmetry, Kyoto, Sep. 18–22, 1995, edited by M. Abe, N. Nakanishi, I. Ojima (Universal Academic Press, Tokyo, 1996), arXiv:hep-th/9511033.Google Scholar
  7. 5.
    R. Alkofer, L. von Smekal, Phys. Rep. 353, 281 (2001), arXiv:hep-ph/0007355.Google Scholar
  8. 6.
    P. Watson, R. Alkofer, Phys. Rev. Lett. 86, 5239 (2001), arXiv:hep-ph/0102332;Google Scholar
  9. R. Alkofer, L. von Smekal, P. Watson, Proceedings of the ECT* Collaboration Meeting on Dynamical Aspects of the QCD Phase Transition, Trento, Italy, March 12–15, 2001, arXiv:hep-ph/0105142.Google Scholar
  10. 7.
    C. Lerche, L. von Smekal, Phys. Rev. D 65, 125006 (2002), arXiv:hep-ph/0202194.Google Scholar
  11. 8.
    C.S. Fischer, R. Alkofer, H. Reinhardt, Phys. Rev. D 65, 094008 (2002), arXiv:hep-ph/0202195.Google Scholar
  12. 9.
    C.S. Fischer, R. Alkofer, Phys. Lett. B 536, 177 (2002), arXiv:hep-ph/0202202.Google Scholar
  13. 10.
    L. von Smekal, R. Alkofer, A. Hauck, Phys. Rev. Lett. 79, 3591 (1997), arXiv:hep-ph/9705242;Google Scholar
  14. L. von Smekal, R. Alkofer, A. Hauck, Ann. Phys. (N.Y.) 267, 1 (1998), arXiv:hep-ph/9707327.Google Scholar
  15. 11.
    D. Zwanziger, Phys. Rev. D 65, 094039 (2002), arXiv:hepth/0109224.Google Scholar
  16. 12.
    F.D. Bonnet, P.O. Bowman, D.B. Leinweber, A.G. Williams, Phys. Rev. D 62, 051501 (2000), arXiv:heplat/0002020.Google Scholar
  17. 13.
    F.D. Bonnet, P.O. Bowman, D.B. Leinweber, A.G. Williams, J.M. Zanotti, Phys. Rev. D 64, 034501 (2001), arXiv:hep-lat/0101013.Google Scholar
  18. 14.
    K. Langfeld, H. Reinhardt, J. Gattnar, Nucl. Phys. B 621, 131 (2002), arXiv:hep-ph/0107141; see also K. Langfeld et al.,arXiv:hep-th/0209173.Google Scholar
  19. 15.
    D. Zwanziger, Phys. Rev. D 67 105001 (2003), arXiv:hepth/0206053.Google Scholar
  20. 16.
    R. Alkofer, C.S. Fischer, L. von Smekal, Acta Phys. Slovaca 52 191 (2002), arXiv:hep-ph/0205125.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • R. Alkofer
    • 1
  • C. S. Fischer
    • 1
  • L. von Smekal
    • 2
  1. 1.Institute for Theoretical PhysicsUniversity of TübingenTübingenGermany
  2. 2.Institute for Theoretical Physics IIIUniversity of Erlangen-NürnbergErlangenGermany

Personalised recommendations