Game Theory, Symmetry, and Scientific Discovery

  • Horace W. Brock


Formal theories in the natural and social sciences usually take the form of mathematical relationships specifying how one subset of variables depends upon another. Given this truism, it is not a little ironic that many of the most innovative and successful theories of twentieth century science have resulted from an a priori specification of how given subsets of variables (or relationships) do not depend upon other subsets. Indeed, a hallmark of successful theory construction has been an identification of apposite invariances, independence assumptions, and other essentially algebraic conditions prior to constructing a theory.


Game Theory Symmetry Group Symmetry Transformation Inductive Logic Bargaining Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aumann, R. J.: “An Axiomatization of the Non-Transferable Utility Value”, Econometrica, 53 (1985), 599–612.CrossRefGoogle Scholar
  2. 2.
    Aumann, R. J. and M. Kurz: “Power and Taxes in a Multi-Commodity Market”, Israel Journal of Mathematics, 27 (1977), 145–159.CrossRefGoogle Scholar
  3. 3.
    Birkhoff, G. D.: “Mathematics of Aesthetics”, in J. R. Newman (ed.), The World of Mathematics, Volume IV, Simon and Schuster, New York, 1956.Google Scholar
  4. 4.
    Brock, H. W.: “The Role of Symmetry Groups in Alternative Theories of Fair Division”, Proceedings of the Naval Postgraduate School Conference on Mathematics Linkages, Monterey, 1978.Google Scholar
  5. 5.
    Brock, H. W.: “A Game Theoretic Account of Social Justice”, Theory and Decision, 11 (1979), 143–151.CrossRefGoogle Scholar
  6. 6.
    Brock, H. W.: “Algebraic Foundations of Aesthetics”, Unpublished private correspondence to Messrs. Blairman and Sons, London, 1982.Google Scholar
  7. 7.
    Cox, R. T.: “Probability, Frequency, and Reasonable Expectation”, American Journal of Physics, 14 (1946), 113.Google Scholar
  8. 8.
    Einstein, A. and W. Mayer: “The Group Theoretical Structure of Relativistic Physics”, Preuss. Akad. Wiss. Phys. Math. Klass Sitz., 27 (1932), 522–534.Google Scholar
  9. 9.
    Harsanyi, J. C.: “Approaches to the Bargaining Problem before and after the Theory of Games: A Critical Discussion of Zeuthen’s, Hicks’, and Nash’s Theories”, Econometrica,24 (1956), 144157.Google Scholar
  10. 10.
    Harsanyi, J. C.: “A Bargaining Model for the Cooperative n-Person Game”, in A. W. Tucker and R. D. Luce (eds.), Contributions to the Theory of Games, IV, Princeton University Press, Princeton, 1959, 325–355.Google Scholar
  11. 11.
    Harsanyi, J. C.: “On the Rationality Postulates Underlying the Theory of Cooperative Games”, Journal of Conflict Resolutions, 5 (1961), 179–196.CrossRefGoogle Scholar
  12. 12.
    Harsanyi, J. C.: “Measurement of Social Power in n-Person Reciprocal Power Situations”, Behavioral Science, 7 (1962), 81–91.CrossRefGoogle Scholar
  13. 13.
    Harsanyi, J. C.: “A Simplified Bargaining Model for the n-Person Cooperative Game”, International Economic Review, 4 (1963), 194–220.CrossRefGoogle Scholar
  14. 14.
    Harsanyi, J. C.: “Games with Incomplete Information Played by ‘Bayesian’ Players”, Parts I-III, Management Science, 14 (1967), 159–182, and (1968), 320–334 and 486–502.Google Scholar
  15. 15.
    Harsanyi, J. C.: “The Tracing Procedure: A Bayesian Approach to Defining a Solution for n-Person Cooperative Games”, International Journal of Game Theory, 4 (1975), 61–94.CrossRefGoogle Scholar
  16. 16.
    Harsanyi, J. C.: Essays on Ethics, Social Behavior, and Scientific Explanation, Part C, D. Reidel Publishing Company, Dordrecht, Holland, 1976.Google Scholar
  17. 17.
    Harsanyi, J. C.: “Rule Utilitarianism and Decision Theory”, Erkenntnis, 11 (1977), 25–53.CrossRefGoogle Scholar
  18. 18.
    Harsanyi, J. C.: Rational Behavior and Bargaining Equilibrium in Games and Social Situations, Chapter 4, Cambridge University Press, Cambridge, 1977.Google Scholar
  19. 19.
    Harsanyi, J. C. and R. Selten: A General Theory of Equilibrium Selection in Games, M.I.T. Press, Cambridge, 1988.Google Scholar
  20. 20.
    Hart, S.: “An Axiomatization of Harsanyi s Non-Transferable Utility Solution”, Econometrica, 53 (1985), 1295–1313.CrossRefGoogle Scholar
  21. 21.
    Jaynes, E. T.: “Information Theory and Statistical Mechanics, I”, Physical Review,106 (1957), 620630.Google Scholar
  22. 22.
    Jaynes, E. T.: “Prior Probabilities”, I.E.E.E. Transactions on Systems Science and Cybernetics, SSC-4 (1968), 227–241.Google Scholar
  23. 23.
    Kohlberg, E. and J. Mertens: “On the Strategic Stability of Equilibria”, Econometrica, 54 (1986), 1003–1037.CrossRefGoogle Scholar
  24. 24.
    Langley, P. W. and H. A. Simon: Scientific Discovery: Computer Explorations of the Creative Process, M.I.T. Press, Cambridge, 1987.Google Scholar
  25. 25.
    Popper, K.: The Logic of Scientific Discovery, Basic Books, New York, 1959.Google Scholar
  26. 26.
    Rasmusen, E.: Games and Information, Basil Blackwell, Oxford, 1989.Google Scholar
  27. 27.
    Rosen, J.: A Symmetry Primer for Scientists, John Wiley and Sons, New York, 1983.Google Scholar
  28. 28.
    Rosenkrantz, R. D.: “Editor’s Introduction”, in R. D. Rosenkrantz (ed.), E. T. Jaynes: Papers on Probability, Statistics, and Statistical Physics, D. Reidel Publishing Company, Dordrecht, Holland, 1983.Google Scholar
  29. 29.
    Rothblum, U. G.: “Combinatorial Representations of the Shapley Value based on Average Relative Payoffs”, in A. E. Roth (ed.), The Shapley Value: Essays in Honor of Lloyd S. Shapley, Cambridge University Press, Cambridge, 1988.Google Scholar
  30. 30.
    Sachs, M.: “On the Most General Form of a Field Theory from Symmetry Principles”, Nature, 226 (1970), 138–139.CrossRefGoogle Scholar
  31. 31.
    Sachs, M.: General Relativity and Matter, D. Reidel Publishing Company, Dordrecht, Holland, 1982.Google Scholar
  32. 32.
    Sachs, M.: Quantum Mechanics from General Relativity, D. Reidel Publishing Company, Dordrecht, Holland, 1986.Google Scholar
  33. 33.
    Sachs, M.: Einstein versus Bohr: The Continuing Controversy in Physics, Open Court Publishing Company, La Salle, Illinois, 1988.Google Scholar
  34. 34.
    Schelling, T.: “For the Abandonment of Symmetry in Game Theory”, Review of Economics and Statistics, 41 (1959), 213–224.CrossRefGoogle Scholar
  35. 35.
    Selten, R.: “Bewertung Strategischer Spiele”, Zeitschrift fur die Gesamte Staatswissenschaft, 116 (1960), 221–282.Google Scholar
  36. 36.
    Sen, A. K.: “Information and Invariance in Normative Choice”, in W. Heller, R. Stan, and D. Starrett (eds.), Social Choice and Public Decision-Making: Essays in Honor of Kenneth J. Arrow, Volume I, Cambridge University Press, Cambridge, 1986.Google Scholar
  37. 37.
    Shapley, L. S.: “A Value for n-Person Games”, in H. W. Kuhn and A. W. Tucker (eds.), Contributions to the Theory of Games, II, Princeton University Press, Princeton, 1953, 307–317.Google Scholar
  38. 38.
    Shapley, L. S.: “Utility Comparisons and the Theory of Games”, in La Decision: Aggregation et Dynamique des Ordres de Preference, Editions du Centre National de la Recherche Scientifique, Paris, 1969, 251–263.Google Scholar
  39. 39.
    Shore, J. E. and R. W. Johnson: “Axiomatic Derivation of the Principle of Maximum Entropy and the Principle of Minimum Cross-Entropy”, I.E.E.E. Transactions on Information Theory, IT-26 (1980), 26–37.Google Scholar
  40. 40.
    Simon, H. A.: Models of Discovery, D. Reidel Publishing Company, Dordrecht, Holland, 1977.Google Scholar
  41. 41.
    Weyl, H.: Symmetry, Princeton University Press, Princeton, 1952.Google Scholar
  42. 42.
    Wigner, E. P.: Group Theory, Academic Press, New York, 1959.Google Scholar
  43. 43.
    Zytkow, J. M. and H. A. Simon: “Normative Systems of Discovery and Search”, Synthese, 74 (1988), 65–90.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Horace W. Brock
    • 1
  1. 1.Strategic Economic Decisions, Inc.Menlo ParkUSA

Personalised recommendations