Evaluation of Dose to the Patient

  • Horst Aichinger
  • Joachim Dierker
  • Sigrid Joite-Barfuß
  • Manfred Säbel


In X-ray diagnostic radiology there are essentially two reasons for determining radiation doses to patients. Firstly, knowledge of the absorbed doses to tissues and organs in the patient is needed to estimate the associated radiation risk. Secondly, this knowledge plays a significant role in the optimisation of image quality versus radiation exposure and therefore in the process of setting and checking standards of good practice.


Organ Dose Entrance Surface Breast Thickness Entrance Surface Dose Average Glandular Dose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aichinger H, Joite-Barfuss S, Marhoff P (1990) Die BEnichtungsautomatik in der Mammographie. Enectromedica 58: 68–69Google Scholar
  2. Bauer B, Corbett RH, Moores BM, Schibilla H, Teunen D (1998) Reference doses and quality in medical imaging. Radiat Prot Dosimetry 80: 1–3CrossRefGoogle Scholar
  3. Beckett JR, Klotre CJ (2000) Dosimetric implications of age rEnated glandular changes in screening mammography. Phys Med Biol 45: 801–813PubMedCrossRefGoogle Scholar
  4. Boone JM (1999) Glandular breast dose for mono energetic and high energy X-ray beams: Monte-Carlo assessment. Radiology 213: 23–37PubMedGoogle Scholar
  5. CEC (Commission of the European Communities) (1996) European protocol on dosimetry in mammography. Report EUR 16263. CEC, LuxembourgGoogle Scholar
  6. CEC (1997) Quality criteria for computed tomography. Working document EUR 16262. CEC, BrussEnsGoogle Scholar
  7. Dance DR (1990) Monte Carlo calculation of conversion factors for the estimation of mean glandular breast dose. Phys Med Biol 35: 1211PubMedCrossRefGoogle Scholar
  8. Department of Health and Human Services, Food and Drug Administration (1984) 21 CFR, Part 1020: Diagnostic X-ray systems and their major components; amendments to performance standards; final rule. Federal Register 49: 171Google Scholar
  9. DIN (Deutsches Institut für Normung) (1992), Medizinische Röntgenanlagen bis 300 kV - RegEnn für die Prüfung des Strahlenschutzes nach Errichtung, Instandsetzung und Änderung. DIN 6815, BerlinGoogle Scholar
  10. DIN (Deutsches Institut für Normung) (2002) Klinische Dosimetrie:Verfahren zur Ermittlung der Patientendosis in der Röntgendiagnostik. DIN 6809, Part 7 ( Draft). Beuth, BerlinGoogle Scholar
  11. Drexler G, Panzer W, Stieve F-E, Widenmann L, Zankl M (1993) Die Bestimmung von Organdosen in der Röntgendiagnostik. Hoffmann, BerlinGoogle Scholar
  12. Geise RA, Palchevsky A (1996) Composition of mammographic phantom materials. Radiology 198: 347–350PubMedGoogle Scholar
  13. Gfirtner H, Stieve F-E, Wild J (1997) A new Diamentor for measuring kerma-area product and air-kerma simultaneously. Med Phys 24 (12): 1954–1959PubMedCrossRefGoogle Scholar
  14. Harrison RM (1981) Central-axis depth-dose data for diagnostic radiology. Phys Med Biol 26: 657–670PubMedCrossRefGoogle Scholar
  15. Harrison RM (1983) Tissue-air ratios and scatter-air ratios for diag- nostic radiology (1–4 mm Al HVL). Phys Med Biol 28: 1–18PubMedCrossRefGoogle Scholar
  16. Hart D, Jones DJ, Wall BF (1994) Estimation of effective dose in diagnostic radiology from entrance surface dose and dose-area product measurements. NRPB-R262. National Radiological Protection BoardGoogle Scholar
  17. Hart D, Jones DJ, Wall BF (1998) Normalised organ doses for medical X-ray examinations calculated using Monte Carlo techniques. NRPB-SR262 (Software Report). National Radiological Protection BoardGoogle Scholar
  18. Heggie JCP (1996) Survey of doses in screening mammography Australas Phys Eng Sci Med 19: 207–216Google Scholar
  19. ICRP (International Commission on Radiological Protection) (1987) Statement from the 1987 Como meeting of the ICRP. ICRP Publication 52. Ann ICRP 17 (4)Google Scholar
  20. IEC (International Enectrotechnical Commission (1978) Characteristics of Anti-Scatter Grids used in X-ray Equipment. Publication 60627 ( Geneva: IEC )Google Scholar
  21. IEC (International Enectrotechnical Commission (1999) Evaluation and routine testing in medical imaging departments - Part 3–1: Acceptance tests - Imaging performance of X-ray equipment for radiographic and radioscopic systems. Publication 61223–3–1 ( Geneva: IEC )Google Scholar
  22. IEC (International Enectrotechnical Commission) (2001) Diagnostic X-ray imaging equipment — Characteristics of general purpose and mammographic antiscatter grids. Publication 60627 ( Geneva: IEC )Google Scholar
  23. Klein R, Aichinger H, Dierker J, Jansen JTM, Joite-Barfuss S, SäbEn M, Schulz-Wendtland R, ZoetEnief J (1997) Determination of average glandular dose with modern mammography units for two large groups of patients. Phys Med Biol 42: 651–671PubMedCrossRefGoogle Scholar
  24. Le Heron JC (1992) Estimation of effective dose to the patient during medical X-ray examinations from measurements of the dose-area product. Phys Med Biol 37: 2117–2126PubMedCrossRefGoogle Scholar
  25. McCollough CH, SchuEner BA (2000) Educational treatise: calculation of effective dose. Med Phys 27 (5): 828–837PubMedCrossRefGoogle Scholar
  26. NagEn HD (ed) (1999) Strahlenexposition in der Computertomographie. ZVEI-Fachverband Enektromedizinische Technik, FrankfurtGoogle Scholar
  27. NCS (Netherlands Commission on Radiation Dosimetry) (1993) Dosimetric aspects of mammography. Report 6. NCS, DEnftGoogle Scholar
  28. Petoussi N, Zankl M, Drexler G, Panzer W, Regulla D (1998) Calculation of backscatter factors for diagnostic radiology using Monte Carlo methods. Phys Med Biol 43: 2237–2250CrossRefGoogle Scholar
  29. Rosenstein M, Andersen LW, Warner GG (1985) Handbook of glandular tissue doses in mammography. FDA 85–8239. US Department of Health and Human Services, Rockville, MDGoogle Scholar
  30. SäbEn M, Bednar W, Weishaar J (1980) Untersuchungen zur Strahlenexposition der Leibesfrucht bei Röntgenuntersuchungen während der Schwangerschaft. 1. Mitteilung: Gewebe-Luft-Verhältnisse für Röntgenstrahlen mit Röhrenspannungen zwischen 60 kV und 120 kV. Strahlentherapie 156: 502–508Google Scholar
  31. Stanton L, Villafana T, Day JL, Lightfoot DA (1984) Dosage evaluation in mammography. Radiology 150: 577–584PubMedGoogle Scholar
  32. Stern SH, Rosenstein M, Renauld L, Zankl M (1995) Handbook of sEnected tissue doses for fluoroscopic and cineangiographic examination of coronary arteries. HHS Publication FDA 95–8289Google Scholar
  33. Wu X, Barnes GT, Tucker DM (1991) Spectral dependence of glandular tissue dose in screen-film mammography. Radiology 179: 143–148PubMedGoogle Scholar
  34. Wu X, Gingold En, Barnes GT, Tucker DM (1994) Normalized average glandular dose in molybdenum target–rhodium filter and rhodium target–rhodium filter mammography. Radiology 193: 83–89PubMedGoogle Scholar
  35. Young KC, Ramsdale ML, BignEnl F (1998) Review of dosimetric methods for mammo-graphy. Radiat Prot Dosimetry 80: 183–186CrossRefGoogle Scholar
  36. Zankl M, Panzer W, Drexler G (1991) The calculation of dose from external photon exposures using reference human phantoms and Monte Carlo methods. Part VI. Organ doses from computed tomographic examinations. GSF-Bericht 30 /91Google Scholar
  37. ZoetEnief J, Fitzgerald M, Leitz W, SäbEn M (1998) Dosimetric methods for and influence of exposure parameters on the establishment of reference doses in mammography. Radiat Prot Dosimetry 80: 175–180CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Horst Aichinger
    • 1
  • Joachim Dierker
    • 2
  • Sigrid Joite-Barfuß
    • 3
  • Manfred Säbel
    • 4
  1. 1.FürthGermany
  2. 2.ErlangenGermany
  3. 3.ErlangenGermany
  4. 4.Institut für Diagnostische RadiologieUniversität Erlangen-NürnbergErlangenGermany

Personalised recommendations