Interaction of Photons with Matter

  • Horst Aichinger
  • Joachim Dierker
  • Sigrid Joite-Barfuß
  • Manfred Säbel

Abstract

As an X-ray beam passes through material, there exist three alternatives for each photon:
  1. 1.

    It can penetrate the material without interacting

     
  2. 2.

    It can interact with material and be completely absorbed by depositing its energy

     
  3. 3.

    It can interact and be scattered from its original direction, possibly depositing a part of its energy

     

Keywords

Cesium Polyimide Thallium Tellurium Neon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Attix FH (1986) Introduction to radiological physics and radiation dosimetry. Wiley, New YorkCrossRefGoogle Scholar
  2. Berger MJ and Hubbell JH (1987) XCOM: photon cross sections on a personal computer. NBSIR 87 – 3597. NBS, Washington, DCCrossRefGoogle Scholar
  3. Boone JM, Chavez AE (1996) Comparison of X-ray cross sections for diagnostic and therapeutic medical physics. Med Phys 23: 1997–2005PubMedCrossRefGoogle Scholar
  4. Cullen DE, Hubbell JH, Kissel L (1997) EPDL 1997: the evaluated photon data library. Lawrence Livermore National Laboratory Report UCRL-50400. vol. 6, rev. 5Google Scholar
  5. DIN (Deutsches Institut für Normung) (1976) Aluminium — Halbzeug. DIN 1712 – 3. Beuth, BerlinGoogle Scholar
  6. DIN (Deutsches Institut für Normung) (1983) Aluminiumlegierungen n Knetlegierungen. DIN 1725–1. Beuth, BerlinGoogle Scholar
  7. Hammerstein GR, Miller DW, White DR, Masterson ME, Woodard HQ, Laughlin JS (1979) Absorbed radiation dose in mammography. Radiology 130: 485–491PubMedGoogle Scholar
  8. Hermann KP, Geworski L, Muth M, Harder D (1985) Polyethylene-based water-equivalent phantom material for X-ray dosimetry at tube voltages from 10 to 100 kV. Phys Med Biol 30: 1195–2000PubMedCrossRefGoogle Scholar
  9. Hubbell JH (1999) Review of photon interaction cross section data in the medical and biological context. Phys Med Biol 44: 1–22CrossRefGoogle Scholar
  10. Hubbell JH, Seltzer SM (1995) Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients 1 keV to 20 MeV for elements Z = 1 to 92 and 48 additional substances of dosimetric interest. NISTIR 5632. Natl Inst Standards Technol, USAGoogle Scholar
  11. ICRU (1989) Tissue substitutes in radiation dosimetry and measurement. Report 44. ICRU, Bethesda, MDGoogle Scholar
  12. Klein J (1979) Zur filmmammographischen Nachweisbarkeitsgrenze von Mikroverkalkungen. Fortschr Röntgenstr 131: 205–210CrossRefGoogle Scholar
  13. Krieger H (1998) Grundlagen. Strahlenphysik, Dosimetrie und Strahlenschutz, vol. 1. Teubner, StuttgartGoogle Scholar
  14. NIST (2001) Database at http://physics.nist.gov/PhysRefData/contents.html
  15. Schmidt B (2001) Dosisberechnungen für die Computertomographie. Thesis. University of Erlangen-Nürnberg, GermanyGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Horst Aichinger
    • 1
  • Joachim Dierker
    • 2
  • Sigrid Joite-Barfuß
    • 3
  • Manfred Säbel
    • 4
  1. 1.FürthGermany
  2. 2.ErlangenGermany
  3. 3.ErlangenGermany
  4. 4.Institut für Diagnostische RadiologieUniversität Erlangen-NürnbergErlangenGermany

Personalised recommendations