Advertisement

Quantum/Classical Phase Space Analogies

  • Daniela Dragoman
  • Mircea Dragoman
Part of the The Frontiers Collection book series (FRONTCOLL)

Abstract

The phase space is a space endowed with a tensor, which gives it the geometric structure, is called a symplectic form, and a real-valued function on this space called the Hamiltonian. In classical mechanics, the points in the phase space represent dynamically possible states of a physical system while the Hamiltonian determines a class of curves in the phase space that can be viewed as the dynamically possible histories of the system. A unique dynamical trajectory passes through each point in phase space. For time-independent problems the phase space is spanned by (r, p), where r is the position vector and p its associated momentum in the Hamiltonian sense. For time-dependent problems a generalized phase space (r, t, p, w) should be considered, where w is the temporal frequency. However, in many situations, only the evolution in the temporal phase space (t, w) is of interest. Throughout this chapter we refer mainly to the spatial phase space (r, p). The phase space treatment of quantum or classical systems does not provide additional information about the state of the system that cannot be retrieved otherwise, but often offers new insights into many aspects of the phenomena under study.

Keywords

Phase Space Uncertainty Relation Classical Physic Refractive Index Profile Classical Phase Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam, G. (1995): J. Mod. Opt. 42, 1311ADSCrossRefGoogle Scholar
  2. Agarwal, G.S. (1987): J. Mod. Opt. 34, 909ADSMATHCrossRefGoogle Scholar
  3. Allen, L., M.W. Beijersbergen, R.J.C. Spreeuw, and J.P. Woerdman (1992): Phys. Rev. A 45, 8185ADSCrossRefGoogle Scholar
  4. Alonso, M.A. and G.W. Forbes (2000): J. Opt. Soc. Am. A 17, 2391Google Scholar
  5. Balazs, N.L. and B.K. Jenings (1984): Phys. Rep. 104, 347MathSciNetADSCrossRefGoogle Scholar
  6. Banaszek, K. and K. Wódkiewicz (1996): Phys. Rev. Lett. 76, 4344ADSCrossRefGoogle Scholar
  7. Banaszek, K., K. Wódkiewicz, and W.P. Schleich (1998): Optics Express 2, 169ADSCrossRefGoogle Scholar
  8. Bartlett, M.S. and J.E. Moyal (1949): Proc. Cambridge Philos. Soc. 45, 545MathSciNetMATHGoogle Scholar
  9. Bastiaans, M.J. (1979): J. Opt. Soc. Am. 69, 1710ADSCrossRefGoogle Scholar
  10. Bastiaans, M.J. (1986): J. Opt. Soc. Am. A 3, 1227Google Scholar
  11. Bergmann, E.E. (1972): Appl. Opt. 11, 113ADSCrossRefGoogle Scholar
  12. Beth, R.E. (1936): Phys. Rev. 50, 115ADSCrossRefGoogle Scholar
  13. Bialynicki-Birula, I. (2000): Opt. Commun 179, 237ADSCrossRefGoogle Scholar
  14. Bialynicki-Birula, I., M. Kalinski, and J.H. Eberly (1994): Phys. Rev. Lett. 73, 1777ADSCrossRefGoogle Scholar
  15. Bienert, M., F. Haug, W.P. Schleich, and M.G. Raizen (2003): Fortschr. Phys. 51, 474MATHCrossRefGoogle Scholar
  16. Brenner, K.H. and A.W. Lohmann (1982): Opt. Commun 42, 310ADSCrossRefGoogle Scholar
  17. Buzek, V. and P.L. Knight (1995): Prog. Opt. 34, 1CrossRefGoogle Scholar
  18. Chaturvedi, S., R. Sandhya, V. Srinivasan, and R. Simon (1990): Phys. Rev. A 41, 3969MathSciNetADSCrossRefGoogle Scholar
  19. Chisolm, E.D. (2001): Am. J. Phys. 69, 368MathSciNetADSMATHCrossRefGoogle Scholar
  20. Chountasis, S., A. Vourdas, and C. Bendjaballah (1999): Phys. Rev. A 60, 3467MathSciNetADSCrossRefGoogle Scholar
  21. Claasen, T.A.C.M. and W.F.G. Meklenbräuker (1980a): Philips J. Res. 35, 217MathSciNetMATHGoogle Scholar
  22. Claasen, T.A.C.M. and W.F.G. Meklenbräuker (1980b): Philips J. Res. 35, 372MathSciNetMATHGoogle Scholar
  23. Cohen, L. (1989): Proc. IEEE 77, 941ADSCrossRefGoogle Scholar
  24. Dattoli, G., L. Giannessi, C. Mari, M. Richetta, and A. Torre (1992): Opt. Commun. 87, 175ADSCrossRefGoogle Scholar
  25. Dodonov, V.V. and O.V. Man’ko (2000): J. Opt. Soc. Am. A 17, 2403Google Scholar
  26. Dowling, J.P., W.P. Schleich, and J.A. Wheeler (1991): Annalen der Physik 48, 423ADSCrossRefGoogle Scholar
  27. Dragoman, D. (1997): Prog. Opt. 37, 1CrossRefGoogle Scholar
  28. Dragoman, D. (2000a): Optik 111, 393Google Scholar
  29. Dragoman, D. (2000b): J. Opt. Soc. Am. A 17, 2481Google Scholar
  30. Dragoman, D. (2000c): Phys. Lett. A 274, 93 Google Scholar
  31. Dragoman, D. (2001a): Phys. Lett. A 285, 109MathSciNetADSMATHCrossRefGoogle Scholar
  32. Dragoman, D. (2001b): Optik 112, 31 Google Scholar
  33. Dragoman, D. (2002): Prog. Opt. 43, 433CrossRefGoogle Scholar
  34. Dragoman, D. and M. Dragoman (2001a): Opt. Quantum Electron. 33, 239CrossRefGoogle Scholar
  35. Dragoman, D. and M. Dragoman (2001b): Optik 112, 497ADSCrossRefGoogle Scholar
  36. Eichmann, G. (1971): J. Opt. Soc. Am. 61, 161ADSCrossRefGoogle Scholar
  37. Feldmann, M. (1971): J. Opt. Soc. Am. 61, 446ADSCrossRefGoogle Scholar
  38. Feynman, R. (1987): In: Negative Probabilities in Quantum Mechanics, B. Hiley and F. Peat (Eds.), Routledge, LondonGoogle Scholar
  39. Franson, J.D. (1996): Phys. Rev. A 54, 3808MathSciNetADSCrossRefGoogle Scholar
  40. Galleani, L. and L. Cohen (2002): J. Mod. Opt. 49, 561MathSciNetADSMATHCrossRefGoogle Scholar
  41. Gilmore, R. (1985): Phys. Rev. A 31, 3237MathSciNetADSCrossRefGoogle Scholar
  42. Giulini, D., E. Joos, C. Kiefer, J. Kupsch, I.-O. Stamatescu, and H.D. Zeh (1996): Decoherence and the Appearance of a Classical World in Quantum Theory, Springer, Berlin, HeidelbergGoogle Scholar
  43. Gloge, D. and D. Marcuse (1969): J. Opt. Soc. Am. 59, 1629ADSCrossRefGoogle Scholar
  44. Guillemin, V. and S. Sternberg (1984): Symplectic Techniques in Physics, Cambridge University Press, CambridgeMATHGoogle Scholar
  45. Han, D., Y.S. Kim and M.E. Noz (1987): Phys. Rev. A 35, 1682MathSciNetADSCrossRefGoogle Scholar
  46. Han, D., Y.S. Kim and M.E. Noz (1988): Phys. Rev. A 37, 807MathSciNetADSCrossRefGoogle Scholar
  47. Han, Y.D., W.Y. Hwang, and I.G. Koh (1996): Phys. Lett. A 221, 283MathSciNetADSMATHCrossRefGoogle Scholar
  48. Hillery, M., R.F. O’Connell, M.O. Scully, and E.P. Wigner (1984): Phys. Rep. 106, 121MathSciNetADSCrossRefGoogle Scholar
  49. Hong-Yi, F. and J. VanderLinde (1989): Phys. Rev. A 39, 2987MathSciNetADSCrossRefGoogle Scholar
  50. Horie, K., H. Miyazaki, I. Tsutsui, and S. Tanimura (1999): Annals of Physics 273, 267MathSciNetADSMATHCrossRefGoogle Scholar
  51. Jacobson, D.L., S.A. Werner, and H. Rauch (1994): Phys. Rev. A 49, 3196ADSCrossRefGoogle Scholar
  52. Kan, K.-K. (1981): Phys. Rev. A 24, 2831MathSciNetADSCrossRefGoogle Scholar
  53. Kim, Y.S. and M.E. Noz (1991): Phase Space Picture of Quantum Mechanics, World Scientific, SingaporeGoogle Scholar
  54. Kim, Y.S. and E.P. Wigner (1988): Phys. Rev. A 38, 1159MathSciNetADSCrossRefGoogle Scholar
  55. Kim, Y.S. and E.P. Wigner (1989): Phys. Rev. A 39, 2829MathSciNetADSCrossRefGoogle Scholar
  56. Kirkpatrick, K.A. (2001): e-print quant-ph/0106072Google Scholar
  57. Krivoshlykov, S.G. (1994): Quantum-Theoretical Formalism for Inhomogeneous Graded-Index Waveguides, Akademie Verlag, BerlinMATHGoogle Scholar
  58. Krug, J. (1987): Phys. Rev. Lett. 59, 2133ADSCrossRefGoogle Scholar
  59. Lee, H.-W. (1995): Phys. Rep. 259, 147MathSciNetCrossRefGoogle Scholar
  60. Lein, M., V. Engel, and E.K.U. Gross (2001): Optics Express 8, 411ADSCrossRefGoogle Scholar
  61. Leonhardt, U. (1997): Measuring the Quantum State of Light, Cambridge University Press, CambridgeGoogle Scholar
  62. Lerner, P.B., H. Rauch, and M. Suda (1995): Phys. Rev. A 51, 3889ADSCrossRefGoogle Scholar
  63. Lewis, H.R. and P.G.L. Leach (1982): J. Math. Phys. 23, 2371MathSciNetADSMATHCrossRefGoogle Scholar
  64. Lichtenberg, A.J. (1969): Phase-Space Dynamics of Particles,John Wiley and Sons, New YorkGoogle Scholar
  65. Lohmann, A.W. (1993): J. Opt. Soc. Am. A 10, 2181Google Scholar
  66. Lohmann, A.W., D. Mendlovic, and Z. Zalevsky (1998): Prog. Opt. 38, 263CrossRefGoogle Scholar
  67. Luneburg, R.K. (1964): Mathematical Theory of Optics, University of California Press, BerkeleyGoogle Scholar
  68. Makowski, A.J. and S. Konkel (1998): Phys. Rev. A 58, 4975ADSCrossRefGoogle Scholar
  69. Man’ko, V.I. (1986): In: Lie Methods in Optics, J. Sanchez Mondragón and K.B. Wolf (Eds.), Springer, Berlin, Heidelberg, 193Google Scholar
  70. Marzoli, I. O.M. Friesch, and W.P. Schleich (1998): In: Proc. 5th Wigner Symposium,P. Kasperkovitz and D. Grau (Eds.), World Scientific, Singapore, 323Google Scholar
  71. Moyal, J.E. (1949): Proc. Cambridge Philos. Soc. 45, 99MathSciNetMATHGoogle Scholar
  72. Namias, V. (1980): J. Inst. Math. Appl. 25, 241MathSciNetMATHCrossRefGoogle Scholar
  73. Nazarathy, M. and J. Shamir (1980): J. Opt. Soc. Am. 70, 150ADSCrossRefGoogle Scholar
  74. Neri, F. and G. Rangarajan (1990): Phys. Rev. Lett. 64, 1073MathSciNetADSMATHCrossRefGoogle Scholar
  75. Nienhuis, G. and L. Allen (1993): Phys. Rev. A 48, 656ADSCrossRefGoogle Scholar
  76. O’Connell, R.F. and E.P. Wigner (1981): Phys. Lett. 83 A, 145Google Scholar
  77. Onciul, D. (1994a): Optik 96, 20Google Scholar
  78. Onciul, D. (1994b): Optik 97, 75Google Scholar
  79. Ozaktas, H.M. and D. Mendlovic (1993): Opt. Commun 101, 163ADSCrossRefGoogle Scholar
  80. Ponomarenko, S.A. and E. Wolf (2000): Opt. Lett. 25, 663ADSCrossRefGoogle Scholar
  81. Prange, R.E. and S. Fishman (1989): Phys. Rev. Lett. 63, 704ADSCrossRefGoogle Scholar
  82. Rauch, H. (1993): Phys. Lett. A 173, 240ADSCrossRefGoogle Scholar
  83. Ray, J.R. (1983): Phys. Rev. A 28, 2603Google Scholar
  84. Rosen, N. (1964): Am. J. Phys. 32, 377ADSCrossRefGoogle Scholar
  85. Schiff, L.I. (1968): Quantum Mechanics, 3rd edn., McGraw-Hill, New York Schleich, W.P. (2001): Quantum Optics in Phase Space, Wiley-VCH, BerlinGoogle Scholar
  86. Scully, M.O., H. Walther, and W. Schleich (1994): Phys. Rev. A 49, 1562MathSciNetADSCrossRefGoogle Scholar
  87. Shamir, J. (1979): Appl. Opt. 18, 4195ADSCrossRefGoogle Scholar
  88. Shih, C.-C. (1995): Opt. Lett. 20, 1178ADSCrossRefGoogle Scholar
  89. Simon, R., E.C.G. Sudarshan, and N. Mukunda (1988): Phys. Rev. A 37, 3028MathSciNetADSCrossRefGoogle Scholar
  90. Takabayashi, T. (1954): Prog. Theor. Phys. 11, 341ADSCrossRefGoogle Scholar
  91. Uffink, J. and J. van Lith (1999): Found. Phys. 29, 655MathSciNetCrossRefGoogle Scholar
  92. van Enk, S.J. and G. Nienhuis (1992): Opt. Commun. 94, 147ADSCrossRefGoogle Scholar
  93. Vander Lugt, A. (1966): Proc. IEEE 54, 1055CrossRefGoogle Scholar
  94. Wallis, H., A. Röhrl, M. Naraschewski, and A. Schenzle (1997): Phys. Rev. A 55, 2109ADSCrossRefGoogle Scholar
  95. Wigner, E.P. (1932): Phys. Rev. 40, 749ADSCrossRefGoogle Scholar
  96. Wobst, A., G.-L. Ingold, P. Hänggi, and D. Weinmann (2002): Eur. Phys. J. B 27, 11ADSGoogle Scholar
  97. Wódkiewicz, K. and G.H. Herling (1998): Phys. Rev. A 57, 815ADSCrossRefGoogle Scholar
  98. Wolf, K.B. (1996): Opt. Commun 132, 343ADSCrossRefGoogle Scholar
  99. Wolf, K.B. and A.L. Rivera (1997): Opt. Commun 144, 36ADSCrossRefGoogle Scholar
  100. Yeon, K.-H., D.-H. Kim, C.-I. Um, T.F. George, and L.N. Pandey (1997): Phys. Rev. A 55, 4023MathSciNetADSCrossRefGoogle Scholar
  101. Yourgrau, W. and S. Mandelstam (1979): Variation Principles in Dynamics and Quantum Theory, 3rd edn., Dover, New YorkGoogle Scholar
  102. Zurek, W.H. (1991): Physics Today 44 (10), 36CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Daniela Dragoman
    • 1
  • Mircea Dragoman
    • 2
  1. 1.Physics FacultyUniversity of BucharestBucharestRomania
  2. 2.National Research and Development Institute in MicrotechnologyBucharestRomania

Personalised recommendations