Skip to main content

Quantum/Classical Nonlinear Phenomena

  • Chapter
  • 815 Accesses

Part of the book series: The Frontiers Collection ((FRONTCOLL))

Abstract

Quantum mechanics is a linear theory, based on the superposition principle, which associates with each quantum system a wavefunction that satisfies the Schrödinger equation. In certain cases, constituents of the multi-particle system, for example electrons or atoms, can be described by the single-particle linear Schrödinger equation, which incorporates the presence of the other quantum particles in the effective mass and/or the periodic potential V. Such situations were discussed in Chap. 2, which focused on ballistic electrons, and in Chap. 6, which was dedicated to particle optics. However, this simplifying assumption is not valid for all quantum systems, and there are situations when the presence of other quantum particles in the system must be treated by introducing nonlinear terms into the expression for the potential energy felt by a constituent of the quantum system. In particular, these situations include the cases where many-body interactions cannot be neglected. Quantum nonlinear equations, especially the nonlinear Schrödinger equation (NLS), have many interesting analogies in nonlinear optics or gravity. These analogies are the subject of this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdullaev, F. Kh., B.B. Baizakov, S.A. Darmanyan, V.V. Konotop, and M. Salerno (2001): Phys. Rev. A 64, 043606

    Google Scholar 

  • Agrawal, G.P. (1989): Nonlinear Fiber Optics, Academic Press, Boston Barceló, C., S. Liberati, and M. Visser (2001): Class. Quantum Gray. 18, 1137

    Google Scholar 

  • Beenakker, C.W.J. (2000): In: Quantum Mesoscopic Phenomena and Mesoscopic Devices in Microelectronics, 1.0. Kulik and R. Ellialtioglu (Eds.), NATO Science Series C779, Kluwer, Dordrecht, 71

    Google Scholar 

  • Bradley, C.C., C.A. Sackett, J.J. Tollett, and R.G. Hulet (1997): Phys. Rev. Lett. 77, 1687

    Google Scholar 

  • Bulashenko, O.M., V.A. Kochelap and L.L. Bonilla (1998): Superlattices and Microstructures 23, 467

    Article  ADS  Google Scholar 

  • Burger, S., K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, A. Sanpera, G.V. Shlyapnikov, and M. Lewenstein (1999): Phys. Rev. Lett. 83, 7198

    Article  Google Scholar 

  • Busch, Th. and J.R. Anglin (2001): Phys. Rev. Lett. 87, 010401 Castin, Y. and K. MOlmer (1997): Phys. Rev. A 71, 3426

    Google Scholar 

  • Cuesta, J.A. and R.P. Sear (2002): Phys. Rev. E 67, 03 1406

    Google Scholar 

  • Datta, S. (1997): Electronic Transport in Mesoscopic Systems, Cambridge University Press, Cambridge

    Google Scholar 

  • Denschlag, J., J.E. Simsarian, D.L. Feder, C.W. Clark, L.A. Collins, J. Cubizolles, L. Deng, E.W. Hagley, K. Helmerson, W.P. Reinhardt, S.L. Rolston, B.I. Schneider, and W.D. Phillips (2000): Science 287, 97

    Article  ADS  Google Scholar 

  • de Sterke, C.M. and J.E. Sippe (1994): Prog. Opt. 23, 203

    Article  Google Scholar 

  • Dum, R., J.I. Chirac, M. Lewenstein, and P. Zoller (1998): Phys. Rev. Lett. 80, 2972

    Article  ADS  Google Scholar 

  • Efremidis, N.K. and D.N. Christodoulides (2003): Phys. Rev. A 67, 063608

    Google Scholar 

  • Fedichev, P.O. and U.R. Fischer (2003): e-print cond-matt/0304342

    Google Scholar 

  • Fleischer, J.W., T. Carmon, M. Segev, N.K. Efremidis, and D.N. Christodoulides (2003): Phys. Rev. Lett. 90, 023902

    Google Scholar 

  • Frantzeskakis, D.J., G. Theocharis, F.K. Diakonos, P. Schmelcher, and Yu.S. Kivshar (2002): Phys. Rev. A 66, 073608

    Google Scholar 

  • Garay, L.J., J.R. Anglin, J.I. Chirac, and P. Zoller (2000): Phys. Rev. Lett. 87, 4643

    Article  ADS  Google Scholar 

  • Garay, L.J., J.R. Anglin, J.I. Chirac, and P. Zoller (2001): Phys. Rev. A 63, 023611

    Google Scholar 

  • Goldstein, E.V. and P. Meystre (1999): Phys. Rev. A 79, 1709

    Google Scholar 

  • Hagley, E.W., L. Deng, M. Kazuma, M. Trippenbach, Y.B. Band, M. Edwards, and M. Doery (1999): Phys. Rev. Lett. 83, 3112

    Article  ADS  Google Scholar 

  • Hagley, E.W., L. Deng, W.D. Phillips, K. Burnett, and C.W. Clark (2001): Optics and Photonics News 12, 22, May issue

    Google Scholar 

  • Hong, T., Y.Z. Wang, and Y.S. Huo (1998): Phys. Rev. A 78, 3128 Ketterle, W. (2002): Rev. Mod. Phys. 74, 1131

    Google Scholar 

  • Lenz, G., P. Meystre, and E.M. Wright (1994): Phys. Rev. A 70, 1681 Leonhardt, U. (2002): Nature 415, 406

    ADS  Google Scholar 

  • Louis, P.J.Y., E.A. Ostrovskaya, C.M. Savage, and Yu.S. Kivshar (2003): Phys. Rev. A 67, 013602

    Google Scholar 

  • Malomed, B.A. and C. Persila (1998): e-print cond-matt/9809203

    Google Scholar 

  • Meystre, P. (2001): Atom Optics, Springer, New York, Berlin

    Google Scholar 

  • Ohberg, P. and L. Santos (2001): J. Phys. B 34, 472

    Article  Google Scholar 

  • Reinhardt, W.P. and C.W. Clark (1997): J. Phys. B 30, L787 (1997)

    Google Scholar 

  • Robins, N.P., W. Zhang, E.A. Ostrovskaya, and Yu.S. Kivshar (2001): Phys. Rev. A 64, 02 1601

    Google Scholar 

  • Rodrigues, E.S., E.V. Anda, P. Orellana, and F. Claro (1998): e-print condmat/9811063

    Google Scholar 

  • Rolston, S.L. and W.D. Phillips (2002): Nature 416, 219

    Article  ADS  Google Scholar 

  • Schernthanner, K.J., G. Lenz, and P. Meystre (1994): Phys. Rev. A 50, 4170

    Article  ADS  Google Scholar 

  • Strecker, K.E., G.B. Partridge, A.G. Truscott, and R.G. Hulet (2002): Nature 417, 170

    Article  ADS  Google Scholar 

  • Unruh, W.G. (1981): Phys. Rev. Lett. 46, 1371

    Article  ADS  Google Scholar 

  • Unruh, W.G. and R. Schätzhold (2003): Phys. Rev. D 68, 024008 Wallentowitz, S. and W. Vogel (1997): Phys. Rev. A 77, 4438

    Google Scholar 

  • Yariv, A. (1985): Optical Electronics, 3rd. edn., CBS College Publishing, New York

    Google Scholar 

  • Zobay, O., E.V. Goldstein, and P. Meystre (1999): Phys. Rev. A 60, 3999

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dragoman, D., Dragoman, M. (2004). Quantum/Classical Nonlinear Phenomena. In: Quantum-Classical Analogies. The Frontiers Collection. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09647-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09647-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05766-3

  • Online ISBN: 978-3-662-09647-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics