• Daniela Dragoman
  • Mircea Dragoman
Part of the The Frontiers Collection book series (FRONTCOLL)


Analogy is a way of thinking and understanding the world, of gaining insight into different phenomena in nature, which are linked by common properties or similar behavior. To comprehend the depth at which analogy is rooted in our consciousness, it is worth noting that human beings operate with analogies even at the neuron level (Pask, 2003). Webster’s Dictionary lists the following meanings of the word ‘analogy’: “Agreement, resemblance or correspondence in relations between different objects; coincidence, correlation, equivalence, parallelism, similarity.” The analogies that we refer to in this book endorse all these connotations, but in doing this retain the scientific character that should be expected from a book written for physicists. Almost all the analogies mentioned in this book are supported by a mathematical foundation. The role of mathematics is crucial because the essence of analogy resides in the fact that completely different systems can be modeled by similar mathematical equations unveiling a stunning unity in the world, beyond its apparent diversity.


Classical Analog Schrodinger Equation Bloch Oscillation Classical Optic Atom Optic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aerts, D., S. Aerts, J. Broekaert, and L. Gabora (2000): Found. Phys. 30, 1387MathSciNetCrossRefGoogle Scholar
  2. Ballentine, L.E., Y. Yang, and J.P. Zibin (1994): Phys. Rev. A 50, 2854ADSCrossRefGoogle Scholar
  3. Bellver-Cebreros, C. and M. Rodriguez-Danta (2001): Am. J. Phys. 69, 360ADSCrossRefGoogle Scholar
  4. Bialynicki-Birula, I. (1996): In: Coherence and Quantum Optics VII, Proceedings of the Seventh Rochester Conference on Coherence and Quantum Optics, J.H. Eberly, L. Mandel and E. Wolf (Eds.), Plenum Press, New York, p. 313Google Scholar
  5. Carati, A. and L. Galgani (2001): Found. Phys. 31, 69MathSciNetCrossRefGoogle Scholar
  6. Casperson, L.W. (1993): Bull. Am. Phys. Soc. 38, 1003Google Scholar
  7. Casperson, L.W. (1995): Phys. Rev. A 51, 1673MathSciNetADSCrossRefGoogle Scholar
  8. Charru, F. (1997): Eur. J. Phys. 18, 417MathSciNetCrossRefGoogle Scholar
  9. Cocolicchio, D., L. Telesca, and M. Viggiano (1998): Found. Phys. Lett. 11, 303sCrossRefGoogle Scholar
  10. Cocolicchio, D. and L. Telesca (1998): Found. Phys. Lett. 11, 23CrossRefGoogle Scholar
  11. Deutsch, I.H. and J.C. Garrison (1991): Phys. Rev. A 43, 2498ADSCrossRefGoogle Scholar
  12. Evans, J. and M. Rosenquist (1986): Am. J. Phys. 54, 876ADSCrossRefGoogle Scholar
  13. Evans, J., K.H. Nandi, A. Islam (1996): Am. J. Phys. 64, 1404ADSCrossRefGoogle Scholar
  14. Faria, A.J., H.M. França, C.P. Malta, and R.C. Sponchiado (2002): Physics Lett. A 305, 322ADSMATHCrossRefGoogle Scholar
  15. Fritsche, L. and M. Haugk (2003): Ann. Phys. (Leipzig) 12, 371 Gersten, A. (2001): Found. Phys. 31, 1211Google Scholar
  16. Han, D., Y.S. Kim, and M.E. Noz (1997): J. Opt. Soc. Am. A 14, 2290 Harvey, R.J. (1966): Phys. Rev. 152, 1115ADSGoogle Scholar
  17. Herrmann, F. and G.B. Schmid (1985): Eur. J. Phys. 6, 16CrossRefGoogle Scholar
  18. Lamb, Jr., W.E. (2001): Am. J. Phys. 69, 2001MathSciNetCrossRefGoogle Scholar
  19. Madelung, E. (1926): Z. Phys. 40, 322ADSMATHGoogle Scholar
  20. Marshall, T.W. and E. Santos (1989): Phys. Rev. A 39, 6271MathSciNetADSCrossRefGoogle Scholar
  21. Monzón, J.J. and L.L. Sanchez-Soto (1999): J. Opt. Soc. Am. A 16, 2013Google Scholar
  22. Pask, C. (2003): Am. J. Phys. 71, 526ADSCrossRefGoogle Scholar
  23. Samuelsson, P. and M. Büttiker (2002): Phys. Rev. Lett. 89, 046601Google Scholar
  24. Scully, M.O. and M.S. Zubairy (1997): Quantum Optics, Cambridge University Press, CambridgeGoogle Scholar
  25. Sivardiere, J. (1983): Eur. J. Phys. 4, 162CrossRefGoogle Scholar
  26. Tsanakis, C. (1998): Eur. J. Phys. 19, 69CrossRefGoogle Scholar
  27. Vigoureux, J.M. and Ph. Grossel (1993): Am. J. Phys. 61, 707ADSCrossRefGoogle Scholar
  28. Zareski D. (2001): Found. Phys. Lett. 14, 447MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Daniela Dragoman
    • 1
  • Mircea Dragoman
    • 2
  1. 1.Physics FacultyUniversity of BucharestBucharestRomania
  2. 2.National Research and Development Institute in MicrotechnologyBucharestRomania

Personalised recommendations