Skip to main content

The Photodetachment of an Electron from a Chloride Ion in Water Studied by Quantum Molecular Dynamics Simulation

  • Conference paper
  • 139 Accesses

Part of the book series: Centre de Physique des Houches ((LHWINTER,volume 4))

Abstract

The UV absorption spectra of halide ions constitute a unique class of electronic spectra [1]. The electronic transitions in solvated halides involve bound excited states which are no property of the ion, but exist due to the stabilizing potential created by the surrounding solvent molecules. Therefore an electron promoted to these so-called charge transfer to solvent (CTTS) states [1] is not bound to the ion and could eventually separate from the parent to become trapped by the solvent. In fact, it was recently possible to directly observe the electron photodetachment from various aqueous halides by means of ultrashort time-resolved spectroscopy [2, 3, 4].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blandamer M.J. and Fox M.F.,Chem. Rev. 70 (1970) 59 and references therein.

    Google Scholar 

  2. Long F.H., Lu H. and Eisenthal K.B., J. Chem. Phys. 91 (1989) 4413.

    Article  ADS  Google Scholar 

  3. Long F.H., Lu H., Shi Y. and Eisenthal K.B., Chem. Phys. Letters 169 (1990) 165.

    Article  ADS  Google Scholar 

  4. Ashokkumar M., Gelabert H., Antonetti A. and Gauduel Y., in Ultra-fast Reaction Dynamics and Solvent Effects,ed. Y. Gauduel and Rossky P.J. (AIP Press, New York, 1993), p.107, Gauduel Y., Gelabert H., and Ashokkumar M., Chem. Phys,in press.

    Google Scholar 

  5. See, f.e., Hart E.J. and Anbar M., The Hydrated Electron ( Wiley, New York, 1970 );

    Google Scholar 

  6. Feng D.F. and Kevan L., Chem. Rev. 80 (1980) 1;

    Article  Google Scholar 

  7. Coker D.F. and Berne B.J., in Excess Electrons in Dielectric Media, ed. J.-P. Jay-Gerin and G. Ferradini, ( CRC, Boca Raton, 1991 ).

    Google Scholar 

  8. Migus A., Gauduel Y., Martin J.L. and Antonetti A., Phys. Rev. Letters 58 (1987) 1559.

    Google Scholar 

  9. Long F.H., Lu H. and Eisenthal K.B., Phys. Rev. Letters 64 (1990) 1469.

    Google Scholar 

  10. Alfano J.C., Walhout P.K., Kimura Y. and Barbara P.F., J. Chem. Phys., 98 (1993) 5996;

    Article  ADS  Google Scholar 

  11. Kimura Y., Alfano J.C., Walhout P.K. and Barbara P.F., J. Phys. Chem. 98 (1994) 3450.

    Article  Google Scholar 

  12. Schnitker J. and Rossky P.J., J. Chem. Phys. 86 (1987) 3462, 3471.

    Article  Google Scholar 

  13. Schnitker J., Motakabbir K., Rossky P.J. and Friesner R., Phys. Rev. Letters, 66 (1988) 459;

    Google Scholar 

  14. Barnett R.N., Landman U., Cleveland C.L. and Jortner J., J. C.em. Phys. 88 (1987) 4421, 4429;

    Google Scholar 

  15. Schnitker J. and Rossky P.J., J. Phys. Chem. 93 (1989) 6956;

    Article  Google Scholar 

  16. Motakabbir K. A. and Rossky P.J., Chem. Phys. 129 (1989) 253;

    Article  Google Scholar 

  17. Barnett R.N., Landman U. and Nitzan A., J. Chem. Phys. 91 (1989) 5567;

    Article  ADS  Google Scholar 

  18. Barnett R.N., Landman U., Makov G. and Nitzan A., J. Chem. Phys. 93 (1990) 6226;

    Article  ADS  Google Scholar 

  19. Space B. and Coker D.F., J. Chem. Phys. 96 (1992) 652;

    Article  ADS  Google Scholar 

  20. Murphrey T.H. and Rossky P.J., J. Chem. Phys. 99 (1993) 515;

    Article  ADS  Google Scholar 

  21. Schwartz B.J. and Rossky P.J., Phys. Rev. Letters 72 (1994) 3283;

    Google Scholar 

  22. Schwartz B.J. and Rossky P.J.,J. Phys. Chem. 98 (1994) 4490;

    Article  Google Scholar 

  23. Schwartz B.J. and Rossky P.J., J. Chem. Phys. 101 (1994) 6902 and 6917.

    Article  ADS  Google Scholar 

  24. Borgis D. and Staib A., Chem. Phys. Letters 230 (1994) 405.

    Article  ADS  Google Scholar 

  25. Berne B.J. and Thirumalai D., Ann. Rev. Phys. Chem. 37, (1986), 401;

    Article  ADS  Google Scholar 

  26. Rossky P.J., J. Opt. Soc. Am. B 7 (1990) 1727 and references therein.

    Google Scholar 

  27. Sheu W.S. and Rossky P.J., Chem. Phys. Letters 202 (1993) 186;

    Article  ADS  Google Scholar 

  28. Sheu W.S. and Rossky P.J., Chem Phys. Letters 213 (1993) 223;

    Article  ADS  Google Scholar 

  29. Sheu W.S. and Rossky P.J., J. Am. Chem. Soc. 115 (1993) 7729.

    Article  Google Scholar 

  30. Staib A. and Borgis D., J. Chem. Phys. in press, 1995.

    Google Scholar 

  31. See, f.e., Jortner J., J. Mol. Phys. 5 (1962) 257.

    Article  Google Scholar 

  32. Staib A. and Borgis D., J. Chem. Phys. submitted.

    Google Scholar 

  33. Jortner J., Ottolenghi M., Rabani J. and Stein G., J. Chem. Phys. 37 (1962) 2488;

    Article  ADS  Google Scholar 

  34. Jortner J., Ottolenghi M. and Stein G., J. Phys. Chem. 68 (1964) 247.

    Article  Google Scholar 

  35. Stein G. and Treinin A., Trans Faraday Soc. 55 (1959) 1086, 1091;

    Article  Google Scholar 

  36. Stein G. and Treinin A., ibid 56 (1960) 1393;

    Google Scholar 

  37. Jortner J. and Treinin A., ibid 58 (1962) 1053.

    Google Scholar 

  38. Sprik M. and Klein M.L., J. Chem. Phys. 89 (1988) 7556.

    Article  ADS  Google Scholar 

  39. Sprik M., Klein M.L. and Watanabe K., J. Phys. Chem. 94 (1990) 6483;

    Article  Google Scholar 

  40. Sprik M., J. Phys. Chem. 95 (1991) 2283;

    Article  Google Scholar 

  41. Sprik M., J. Physique IV (1991) C5 – 99.

    Google Scholar 

  42. Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W. and Klein M.L., J. Chem. Phys. 79 (1983) 926.

    Article  ADS  Google Scholar 

  43. Sprik M. and Klein M.L., J. Chem. Phys. 89 (1988) 1592

    Article  ADS  Google Scholar 

  44. Sprik M. and Klein M.L., J. Chem. Phys. 91 (1989) 5665.

    Article  ADS  Google Scholar 

  45. Romero C. and Jonah D., J. Chem. Phys. 90 (1989) 1877.

    Article  ADS  Google Scholar 

  46. Allen M.P. and Tildesley D.J., Computer Simulation of Liquids ( Clarendon, Oxford, 1987 ).

    MATH  Google Scholar 

  47. Preuss H., Z. Naturforsch. 11 (1956) 823;

    MathSciNet  ADS  MATH  Google Scholar 

  48. Frost A.A., J. Chem. Phys. 47 (1967) 3707 and 3714.

    Article  ADS  Google Scholar 

  49. Newton M.D., J. Phys. Chem. 79 (1975) 2795.

    Article  Google Scholar 

  50. Maggiora G.M. and Christoffersen R.E., J. Am. Chem. Soc. 98 (1976) 8325;

    Article  Google Scholar 

  51. Le Rouzo H. and Silvi B., Int. J. Quant. Chem. 13 (1978) 325.

    Article  Google Scholar 

  52. Hamilton I.P. and Light J.C., J. Chem. Phys. 84 (1985) 306.

    Article  ADS  Google Scholar 

  53. Ganas P.S., Talman J.D. and Green A.E.S., Phys. Rev. A 22 (1980) 336.

    Article  ADS  Google Scholar 

  54. Migdalek J. and Baylis W.E., Phys. Rev. A 26 (1982) 1839.

    Article  ADS  Google Scholar 

  55. Grand D., Bernas A. and Amouyal E., Chem. Phys. 44 (1979) 73.

    Article  Google Scholar 

  56. Delahay P. and Dziedzic A., J. Chem. Phys. 80 (1984) 5381.

    Article  ADS  Google Scholar 

  57. Coe J.V., Lee G.H., Eaton J.G., Arnold S.T., Sarkas H.W., Bowen K.H., Ludewight C., Haberland H. and Worshop D.R, J. Chem. Phys. 92 (1990) 3980.

    Article  ADS  Google Scholar 

  58. Jou F.Y. and Freeman G.R., J. Phys. Chem. 83 (1979) 2383.

    Article  Google Scholar 

  59. Borgis D., Staib A. and Rossky P. (unpublished).

    Google Scholar 

  60. Northrup S.H., Pear M.R., Lee C.-Y., McCammon J.A. and Karplus M., Proc. Natl. Acad. Sci. US 79 (1982) 4035;

    Article  ADS  Google Scholar 

  61. Torrie G.M. and Valleau J.P., J. Comput. Phys. 23 (1977) 187.

    Article  ADS  Google Scholar 

  62. Borgis D. and Staib A., “Quantum adiabatic umbrella sampling: The excited state free energy surface of an electron-atom pair in solution”, J. Chem. Phys. submitted.

    Google Scholar 

  63. Smoluchowski M., Z. Phys. Chem. 92 (1918) 129.

    Google Scholar 

  64. Cicotti G., Ferrario M., Hynes J.T. and Kapral R., J. Chem. Phys. 93 (1990) 7137.

    Article  ADS  Google Scholar 

  65. Hynes J.T., in: The Theory of Chemical Reaction Dynamics, Vol. 4, edited by M. Baer ( CRC Press, Boca Raton, 1985 ).

    Google Scholar 

  66. The adiabatic solvent relaxation time can approximately evaluated from frequency shift correlation functions, see Ref. [14]. In the kinetic scheme the association of the separated species to form the electron-atom pair has been neglected under the assumption of infinite phase space volume.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Staib, A., Borgis, D. (1996). The Photodetachment of an Electron from a Chloride Ion in Water Studied by Quantum Molecular Dynamics Simulation. In: Bicout, D., Field, M. (eds) Quantum Mechanical Simulation Methods for Studying Biological Systems. Centre de Physique des Houches, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09638-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09638-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60869-1

  • Online ISBN: 978-3-662-09638-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics