Skip to main content

Curve Crossing in a Protein: Coupling of the Elementary Quantum Process to Motions of the Protein

  • Conference paper
Quantum Mechanical Simulation Methods for Studying Biological Systems

Part of the book series: Centre de Physique des Houches ((LHWINTER,volume 4))

Abstract

The quintessential quantum process in biology and chemistry involves electrons switching between two states. Two examples are electron transfer reactions in proteins when an electron moves from an orbital on the donor moiety D to an orbital on the acceptor moiety A and bond formation or bond breaking in an enzyme when electrons shift from a non-bonding state to a bonding state or vice versa. The energy expectation values of the two states E 1(t) and E 2(t)vary in time due to motions along a reaction coordinate, but also due to thermal fluctuations of the remaining degrees of freedom of the combined reaction—protein system. Often the interaction energies which couple the two electronic states involved in the reaction are weak, i.e., are small compared to the temporal variations of E 1(t) and E 2(t). In this rather typical case the actual reaction process is confined to moments when the two electronic states become energetically degenerate [E 1(t) = E 2(t)] or, to use a widely accepted phrase, when the curves E l and E 2 cross.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schulten K. and Tesch M., Chem. Phys. 158 (1991) 421–446.

    Article  Google Scholar 

  2. Xu D. and Schulten K., Chem. Phys. 182 (1994) 91–117.

    Article  ADS  Google Scholar 

  3. Xu D. and Schulten K., The Photosynthetic Bacterial Reaction Center: II. Structure, Spectroscopy and Dynamics,Plenum Press, New York, 301–312, (1992).

    Google Scholar 

  4. Kubo R., Adv. Chem. Phys. 15 (1969) 101.

    Article  Google Scholar 

  5. Berendsen H.J.C. and Mavri J., J. Phys. Chem. 97 (1993) 13464–13468.

    Article  Google Scholar 

  6. Treutlein H., Schulten K., Deisenhofer J., Michel H., Brünger A. and Karplus M., The Photosynthetic Bacterial Reaction Center: Structure and Dynamics, Plenum, New York, 149, (1988) 139–150.

    Google Scholar 

  7. Treutlein H., Schulten K., Niedermeier C., Deisenhofer J., Michel H. and Devault D., The Photosynthetic Bacterial Reaction Center: Structure and Dynamics, Plenum, New York, 149, (1988), 369–377.

    Google Scholar 

  8. Marcus R.A., J. Chem. Phys. 24 (1956) 966–978.

    Article  ADS  Google Scholar 

  9. Marcus R.A., J. Chem. Phys. 24 (1956) 979–989.

    Article  ADS  Google Scholar 

  10. Treutlein H., Schulten K., Deisenhofer J., Michel H., Brünger A. and Karplus M., Proc. Natl. Acad. Sci. USA 89 (1991) 75–79.

    Article  ADS  Google Scholar 

  11. Uhlenbeck G.E. and Ohrnstein L.S., Phys. Rev. 36 (1930) 823.

    Article  ADS  MATH  Google Scholar 

  12. Chandrasekhar S., Rev. Mod. Phys. 15 (1943) 1.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Bittl R. and Schulten K., Chem. Phys. Lett. 146 (1988) 58–62.

    Article  ADS  Google Scholar 

  14. Nonella M. and Schulten K., J. Phys. Chem. 95 (1991) 2059–2067.

    Article  Google Scholar 

  15. Schulten K. and Bittl R., J. Chem. Phys. 84 (1986) 5155–5161.

    Article  ADS  Google Scholar 

  16. Bittl R. and Schulten K., J. Chem. Phys. 90 (1989) 1794–1803.

    Article  ADS  Google Scholar 

  17. Pütz B., Barsky D. and Schulten K., Chem. Phys. Lett. 183(5) (1991) 391–396.

    Google Scholar 

  18. Pütz B., Barsky D. and Schulten K., J. Magn. Res. 97 (1992) 27–53.

    Google Scholar 

  19. Nadler W. and Schulten K., J. Chem. Phys. 82 (1985) 151–160.

    Article  ADS  Google Scholar 

  20. Barsky D., Pütz B., Schulten K., Schoeniger J., Hsu E.W. and Blackband S., Chem. Phys. Lett. 200 (1992) 88–96.

    Article  ADS  Google Scholar 

  21. Markham J. J., Rev. Mod. Phys. 31 (1959) 956.

    Article  ADS  MATH  Google Scholar 

  22. Jortner J., J. Chem. Phys. 64(1976) 4860–4867.

    Google Scholar 

  23. DeVault D., Quantum-mechanical tunneling in biological systems, Cambridge University press, 1984.

    Google Scholar 

  24. Cardeira A.O. and Leggett A.J., J. Ann. Phys. (N.Y) 149 (1983) 374–456.

    Article  ADS  Google Scholar 

  25. Cardeira A.O. and Leggett A.J., Physica A 121 (1983) 587–616.

    Article  MathSciNet  ADS  Google Scholar 

  26. Leggett A.J., Chakravarty S., Dorsey A.T., Fisher M.P.A. Garg A. and Zwerger W., Rev. Mod. Phys. 59 (1987) 2–86.

    Article  ADS  Google Scholar 

  27. Lord Rayleigh, The Theory of Sound, Vol. I, 2nd ed., Mac Millan and Company Ltd., London, 1894.

    MATH  Google Scholar 

  28. Lord Rayleigh, Scientific Papers,vol. I, p. 491 and vol. IV, p. 370, Cambridge University Press, 1899–1920.

    Google Scholar 

  29. Rips I. and Jortner J., J. Chem. Phys. 87 (1987) 2090–2104.

    Article  ADS  Google Scholar 

  30. Bader J.S., Kuharski R.A. and Chandler D., J. Chem. Phys. 93 (1990) 230–236.

    Article  ADS  Google Scholar 

  31. Thankappan V.K., Quantum Mechanics, John Wiley and Sons, New York, (1985).

    Google Scholar 

  32. Garg A., Onuchic J.N. and Ambegaokar V., J. Chem. Phys. 83 (1985) 4491–4503.

    ADS  Google Scholar 

  33. Onuchic J. N., Beratan D. N. and Hopfield J. J., J. Chem. Phys. 90 (1986) 3707–3721.

    Article  Google Scholar 

  34. Fleming G. R., Martin J. L. and Breton J., Nature 333 (1988) 190.

    Article  ADS  Google Scholar 

  35. Nagarajan V., Parson W. W., Gaul D. and Schenck C., Proc. Natl. Acad. Sci. USA 87 (1990) 7888–7892.

    Article  ADS  Google Scholar 

  36. Gunner M. R. and Dutton P. L., J. Am. Chem. Soc. 111 (1989) 3400–3412.

    Google Scholar 

  37. Marcus R. A. and Sutin N., Biochem. Biophys. Acta 811 (1985) 265–322.

    Google Scholar 

  38. Sumi H. and Marcus R. A., J. Chem. Phys. 84 (1986) 4894–4914.

    Article  ADS  Google Scholar 

  39. Hopfield J.J., Proc. Natl. Acad. Sci. USA 71 (1974) 3640–3644.

    Article  ADS  Google Scholar 

  40. Bixon M. and Jortner J., J. Phys. Chem. 90 (1986) 3795–3800.

    Article  Google Scholar 

  41. Martin J. L., Breton J., Lambry J. C. and Fleming G., The Photosynthetic Bacterial Reaction Center: Structure and Dynamics, J. Breton and A. Vermeglio, Plenum Press, New York and London, (1988) 195–203.

    Google Scholar 

  42. Kirmaier C. and Holten D., The Photosynthetic Bacterial Reaction Center: Structure and Dynamics, J. Breton and A. Vermeglio, Plenum Press, New York and London, (1988) 219–228.

    Google Scholar 

  43. Warshel A. and Hwang J.K., J. Chem. Phys. 84 (1986) 4938–4957.

    Article  ADS  Google Scholar 

  44. Warshel A., Chu Z. T. and Parson W. W., Science 246 (1989) 112–116.

    Article  ADS  Google Scholar 

  45. Wolynes P.G., J. Chem. Phys. 86 (1987) 1957–1966.

    Article  ADS  Google Scholar 

  46. Zheng C., McCammon J. A. and Wolynes P. G., Proc. Natl. Acad. Sci. USA 86 (1989) 6441.

    Article  ADS  Google Scholar 

  47. Abramowitz M. and Stegun I.A., Handbook of Mathematical Functions, Dover, New York, (1972).

    MATH  Google Scholar 

  48. Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T., Numerical Recipes in C, Cambridge University Press, Melbourne, (1988).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schulten, K. (1996). Curve Crossing in a Protein: Coupling of the Elementary Quantum Process to Motions of the Protein. In: Bicout, D., Field, M. (eds) Quantum Mechanical Simulation Methods for Studying Biological Systems. Centre de Physique des Houches, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09638-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09638-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60869-1

  • Online ISBN: 978-3-662-09638-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics