Curve Crossing in a Protein: Coupling of the Elementary Quantum Process to Motions of the Protein

  • K. Schulten
Part of the Centre de Physique des Houches book series (LHWINTER, volume 4)

Abstract

The quintessential quantum process in biology and chemistry involves electrons switching between two states. Two examples are electron transfer reactions in proteins when an electron moves from an orbital on the donor moiety D to an orbital on the acceptor moiety A and bond formation or bond breaking in an enzyme when electrons shift from a non-bonding state to a bonding state or vice versa. The energy expectation values of the two states E 1(t) and E 2(t)vary in time due to motions along a reaction coordinate, but also due to thermal fluctuations of the remaining degrees of freedom of the combined reaction—protein system. Often the interaction energies which couple the two electronic states involved in the reaction are weak, i.e., are small compared to the temporal variations of E 1(t) and E 2(t). In this rather typical case the actual reaction process is confined to moments when the two electronic states become energetically degenerate [E 1(t) = E 2(t)] or, to use a widely accepted phrase, when the curves E l and E 2 cross.

Keywords

Tyrosine Mold Sine Phenylalanine Isoleucine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Schulten K. and Tesch M., Chem. Phys. 158 (1991) 421–446.CrossRefGoogle Scholar
  2. [2]
    Xu D. and Schulten K., Chem. Phys. 182 (1994) 91–117.ADSCrossRefGoogle Scholar
  3. [3]
    Xu D. and Schulten K., The Photosynthetic Bacterial Reaction Center: II. Structure, Spectroscopy and Dynamics,Plenum Press, New York, 301–312, (1992).Google Scholar
  4. [4]
    Kubo R., Adv. Chem. Phys. 15 (1969) 101.CrossRefGoogle Scholar
  5. [5]
    Berendsen H.J.C. and Mavri J., J. Phys. Chem. 97 (1993) 13464–13468.CrossRefGoogle Scholar
  6. [6]
    Treutlein H., Schulten K., Deisenhofer J., Michel H., Brünger A. and Karplus M., The Photosynthetic Bacterial Reaction Center: Structure and Dynamics, Plenum, New York, 149, (1988) 139–150.Google Scholar
  7. [7]
    Treutlein H., Schulten K., Niedermeier C., Deisenhofer J., Michel H. and Devault D., The Photosynthetic Bacterial Reaction Center: Structure and Dynamics, Plenum, New York, 149, (1988), 369–377.Google Scholar
  8. [8]
    Marcus R.A., J. Chem. Phys. 24 (1956) 966–978.ADSCrossRefGoogle Scholar
  9. [9]
    Marcus R.A., J. Chem. Phys. 24 (1956) 979–989.ADSCrossRefGoogle Scholar
  10. [10]
    Treutlein H., Schulten K., Deisenhofer J., Michel H., Brünger A. and Karplus M., Proc. Natl. Acad. Sci. USA 89 (1991) 75–79.ADSCrossRefGoogle Scholar
  11. [11]
    Uhlenbeck G.E. and Ohrnstein L.S., Phys. Rev. 36 (1930) 823.ADSMATHCrossRefGoogle Scholar
  12. [12]
    Chandrasekhar S., Rev. Mod. Phys. 15 (1943) 1.MathSciNetADSMATHCrossRefGoogle Scholar
  13. [13]
    Bittl R. and Schulten K., Chem. Phys. Lett. 146 (1988) 58–62.ADSCrossRefGoogle Scholar
  14. [14]
    Nonella M. and Schulten K., J. Phys. Chem. 95 (1991) 2059–2067.CrossRefGoogle Scholar
  15. [15]
    Schulten K. and Bittl R., J. Chem. Phys. 84 (1986) 5155–5161.ADSCrossRefGoogle Scholar
  16. [16]
    Bittl R. and Schulten K., J. Chem. Phys. 90 (1989) 1794–1803.ADSCrossRefGoogle Scholar
  17. [17]
    Pütz B., Barsky D. and Schulten K., Chem. Phys. Lett. 183(5) (1991) 391–396.Google Scholar
  18. [18]
    Pütz B., Barsky D. and Schulten K., J. Magn. Res. 97 (1992) 27–53.Google Scholar
  19. [19]
    Nadler W. and Schulten K., J. Chem. Phys. 82 (1985) 151–160.ADSCrossRefGoogle Scholar
  20. [20]
    Barsky D., Pütz B., Schulten K., Schoeniger J., Hsu E.W. and Blackband S., Chem. Phys. Lett. 200 (1992) 88–96.ADSCrossRefGoogle Scholar
  21. [21]
    Markham J. J., Rev. Mod. Phys. 31 (1959) 956.ADSMATHCrossRefGoogle Scholar
  22. [22]
    Jortner J., J. Chem. Phys. 64(1976) 4860–4867.Google Scholar
  23. [23]
    DeVault D., Quantum-mechanical tunneling in biological systems, Cambridge University press, 1984.Google Scholar
  24. [24]
    Cardeira A.O. and Leggett A.J., J. Ann. Phys. (N.Y) 149 (1983) 374–456.ADSCrossRefGoogle Scholar
  25. [25]
    Cardeira A.O. and Leggett A.J., Physica A 121 (1983) 587–616.MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    Leggett A.J., Chakravarty S., Dorsey A.T., Fisher M.P.A. Garg A. and Zwerger W., Rev. Mod. Phys. 59 (1987) 2–86.ADSCrossRefGoogle Scholar
  27. [27]
    Lord Rayleigh, The Theory of Sound, Vol. I, 2nd ed., Mac Millan and Company Ltd., London, 1894.MATHGoogle Scholar
  28. [28]
    Lord Rayleigh, Scientific Papers,vol. I, p. 491 and vol. IV, p. 370, Cambridge University Press, 1899–1920.Google Scholar
  29. [29]
    Rips I. and Jortner J., J. Chem. Phys. 87 (1987) 2090–2104.ADSCrossRefGoogle Scholar
  30. [30]
    Bader J.S., Kuharski R.A. and Chandler D., J. Chem. Phys. 93 (1990) 230–236.ADSCrossRefGoogle Scholar
  31. [31]
    Thankappan V.K., Quantum Mechanics, John Wiley and Sons, New York, (1985).Google Scholar
  32. [32]
    Garg A., Onuchic J.N. and Ambegaokar V., J. Chem. Phys. 83 (1985) 4491–4503.ADSGoogle Scholar
  33. [33]
    Onuchic J. N., Beratan D. N. and Hopfield J. J., J. Chem. Phys. 90 (1986) 3707–3721.CrossRefGoogle Scholar
  34. [34]
    Fleming G. R., Martin J. L. and Breton J., Nature 333 (1988) 190.ADSCrossRefGoogle Scholar
  35. [35]
    Nagarajan V., Parson W. W., Gaul D. and Schenck C., Proc. Natl. Acad. Sci. USA 87 (1990) 7888–7892.ADSCrossRefGoogle Scholar
  36. [36]
    Gunner M. R. and Dutton P. L., J. Am. Chem. Soc. 111 (1989) 3400–3412.Google Scholar
  37. [37]
    Marcus R. A. and Sutin N., Biochem. Biophys. Acta 811 (1985) 265–322.Google Scholar
  38. [38]
    Sumi H. and Marcus R. A., J. Chem. Phys. 84 (1986) 4894–4914.ADSCrossRefGoogle Scholar
  39. [39]
    Hopfield J.J., Proc. Natl. Acad. Sci. USA 71 (1974) 3640–3644.ADSCrossRefGoogle Scholar
  40. [40]
    Bixon M. and Jortner J., J. Phys. Chem. 90 (1986) 3795–3800.CrossRefGoogle Scholar
  41. [41]
    Martin J. L., Breton J., Lambry J. C. and Fleming G., The Photosynthetic Bacterial Reaction Center: Structure and Dynamics, J. Breton and A. Vermeglio, Plenum Press, New York and London, (1988) 195–203.Google Scholar
  42. [42]
    Kirmaier C. and Holten D., The Photosynthetic Bacterial Reaction Center: Structure and Dynamics, J. Breton and A. Vermeglio, Plenum Press, New York and London, (1988) 219–228.Google Scholar
  43. [43]
    Warshel A. and Hwang J.K., J. Chem. Phys. 84 (1986) 4938–4957.ADSCrossRefGoogle Scholar
  44. [44]
    Warshel A., Chu Z. T. and Parson W. W., Science 246 (1989) 112–116.ADSCrossRefGoogle Scholar
  45. [45]
    Wolynes P.G., J. Chem. Phys. 86 (1987) 1957–1966.ADSCrossRefGoogle Scholar
  46. [46]
    Zheng C., McCammon J. A. and Wolynes P. G., Proc. Natl. Acad. Sci. USA 86 (1989) 6441.ADSCrossRefGoogle Scholar
  47. [47]
    Abramowitz M. and Stegun I.A., Handbook of Mathematical Functions, Dover, New York, (1972).MATHGoogle Scholar
  48. [48]
    Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T., Numerical Recipes in C, Cambridge University Press, Melbourne, (1988).MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • K. Schulten
    • 1
  1. 1.Department of Physics and Beckman InstituteUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations