Skip to main content

Quantum Chemistry of in situ Retinal: Study of the Spectral Properties and Dark Adaptation of Bacteriorhodopsin

  • Conference paper
Quantum Mechanical Simulation Methods for Studying Biological Systems

Part of the book series: Centre de Physique des Houches ((LHWINTER,volume 4))

Abstract

A combination of molecular dynamics and quantum chemistry techniques have been employed to study the electronic excitation and conformational potential surface of retinal in the binding site of bacteriorhodopsin (bR). The CASSCF(6,9)/6–31G level of “ab initio” calculations (within Gaussian92) has been used for the treatment of both the ground (SO) and excited (S1) states of retinal. Charges of all atoms in the protein are represented by spherical Gaussians and explicitly included in the electronic Hamiltonian of retinal. Spectral properties have been analyzed for the native bR pigment as well as for its D85N mutant. The calculated relative shift in the absorption maxima between the two pigments is in better agreement with experiment than the computed absolute parameters of the absorption line shapes. The dark adaptation processes in bacteriorhodopsin (which involves rotation around the 13–14 and the 15-N retinal double bonds) has been modelled by following the pre-defined reaction coordinate. Our simulations support the notion that the isomerization process is catalyzed by the protonation of an aspartic acid (Asp85) side group of bacteriorhodopsin.

This work was supported by grants from the National Institutes of Health (PHS 5 P41 RR05969-04), the National Science Foundation (BIR-9318159), and the Roy J. Carver Charitable Trust.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Khorana H. G., J. Biol. Chem. 263 (1988) 7439–7442.

    Google Scholar 

  2. Birge R. R., Ann. Rev. Phys. Chem. 41 (1990) 683–733.

    Article  ADS  Google Scholar 

  3. Birge R. R., Biochim. Biophys. Acta 1016 (1990) 293–327.

    Google Scholar 

  4. Mathies R. A., Lin S. W., Ames J. B., and Pollard W. T., Ann. Rev. Biochem. Bioeng. 20(1991) 491–518

    Google Scholar 

  5. Lanyi J. K., J. Bioenerg. Biomemb. 24 (1992) 169–179.

    Article  Google Scholar 

  6. Oesterhelt D., Tittor J., and Bamberg E., J. Bioenerg. Biomemb. 24 (1992) 181–191.

    Article  Google Scholar 

  7. Ebrey T., Light energy transduction in bacteriorhodopsin. In M. Jacobson, editor, Thermodynamics of Membranes, Receptors and Channels, pages 353–387. CRC Press, New York, (1993).

    Google Scholar 

  8. Schulten K. and Tavan P., Nature 272 (1978) 85–86.

    Article  ADS  Google Scholar 

  9. Mogi T., Stern L.J., Chao B.H. and Khorana H.G., J. Biol. Chem. 264 (1989) 14192–14196.

    Google Scholar 

  10. Mogi T., Marti T. and Khorana H. G., J. Biol. Chem. 264 (1989) 14197–14201.

    Google Scholar 

  11. Braiman M. S., Mogi T., Marti T., Stern L.J., Khorana H. G. and Rothschild K. J., Biochemistry 27 (1988) 8516–8520.

    Article  Google Scholar 

  12. Stern L. J. and Khorana H. G., J. Biol. Chem. 264 (1989) 14202–14208.

    Google Scholar 

  13. Gerwert K., Hess B., Soppa J. and Oesterhelt D., Proc. Natl. Acad. Sci. USA 86 (1989) 4943–4947.

    Article  ADS  Google Scholar 

  14. Ohno K., Takeuchi Y. and Yoshida M., Biochim. Biophys. Acta. 462 (1977) 575–582.

    Article  Google Scholar 

  15. Orlandi G. and Schulten K., Chem. Phys. Lett. 64 (1979) 370–374.

    Article  ADS  Google Scholar 

  16. Harbison G., Smith O., Pardoen J., Winkel C., Lugtenburg J., Herzfeld J., Mathies R. and Griffin R., Proc. Natl. Acad. Sci. USA 81 (1984) 1706–1709.

    Article  ADS  Google Scholar 

  17. Smith S., Myers A., Pardoen J., Winkel C., Mulder P., Lugtenburg J. and Mathies R., Biophysics 81 (1984) 2055–2059.

    Google Scholar 

  18. Livnah N. and Sheves M., J. Am. Chem. Soc. 115 (1993) 351.

    Article  Google Scholar 

  19. Kalisky O., Goldschmidt C. R. and Ottolenghi M., Biophys. J. 19 (1977) 185–189.

    Article  Google Scholar 

  20. Sperling W., Rafferty C., Kohl K., and Dencher N., FEBS Lett. 97 (1979) 129–132.

    Google Scholar 

  21. Iwasa T., Tokunaga F. and Yoshizawa T., Photochem. Photobiol. 33 (1981) 539–545.

    Article  Google Scholar 

  22. Balashov S. P., Litvin F. F. and Sineshchekov V. A., Sov. Sci. Rev. D. Physiochem. Biol. 8 (1988) 1–61.

    Google Scholar 

  23. Bryl K., Taiji M., Yoshizava M. and Kobayashi T., Photochem. Photobiol. 56 (1992) 1013–1018.

    Article  Google Scholar 

  24. Gergely C., Ganea C. and Varo G., Biophys. J. 67 (1994) 855–861.

    Article  ADS  Google Scholar 

  25. Henderson R. and Unwin P. N. T., Nature 257 (1975) 28–32.

    Article  ADS  Google Scholar 

  26. Henderson R., Baldwin J. M., Ceska T. A., Zemlin F., Beckmann E. and Downing K. H., J. Mol. Biol. 213 (1990) 899–929.

    Article  Google Scholar 

  27. Ovchinnikov Y. A., Abdulaev N. G., Feigina M. Y., Kiselev A. V. and Lobanov N. A., FEBS Lett. 100 (1979) 219–224.

    Google Scholar 

  28. Khorana H. G., Gerber G. E., Herlihy W. C., Gray C. P. and Anderegg R. J., Proc. Natl. Acad. Sci. USA 76 (1979) 5046–5050.

    Article  ADS  Google Scholar 

  29. Nonella M., Windemuth A. and Schulten K., J. Photochem. Photobiol. 54 (6) (1991) 937–948.

    Article  Google Scholar 

  30. Zhou F., Windemuth A. and Schulten K., Biochemistry 32 (9) (1993) 2291–2306.

    Article  Google Scholar 

  31. Humphrey W., Logunov I., Schulten K. and Sheves M., Biochemistry 33 (1994) 3668–3678.

    Article  Google Scholar 

  32. Logunov I., Humphrey W., Schulten K. and Sheves M., Biophys. J. 68 (1995) 1270–1282.

    Article  Google Scholar 

  33. Ferrand M., Zaccai G., Nina M., Smith J.C., Etchesbest C. and Roux B., FEBS Lett. 327 (1993) 256–260.

    Article  Google Scholar 

  34. Nina M., Roux B. and Smith J., BJ 68 (1995) 25–39.

    Google Scholar 

  35. Scharnagl C., Hettenkofer J. and Fisher S., JPC 99 (1995) 7787–7800.

    Article  Google Scholar 

  36. Warshel A., Nature 260 (1976) 679–683.

    Article  ADS  Google Scholar 

  37. Warshel A., Proc. Natl. Acad. Sci. USA 75 (1978) 2558–2562.

    Article  ADS  Google Scholar 

  38. Warshel A., Chu Z. T. and Hwang J.-K., Chem. Phys. 158 (1991) 303–314.

    Article  Google Scholar 

  39. Nakanishi K., Arnaboldi M., Baloghnair V. and Honig B., J. Am. Chem. Soc. 102 (1980) 7945–7947.

    Article  Google Scholar 

  40. Schulten K., Dinur U. and Honig B., J. Chem. Phys. 73 (8) (1980) 3927–3935.

    Article  ADS  Google Scholar 

  41. Tavan P., Schulten K. and Oesterhelt D., Biophys. J. 47 (1985) 415–430.

    Article  Google Scholar 

  42. Tavan P., Schulten K., Gärtner W. and Oesterhelt D., Biophys. J. 47 (1985):349–356.

    Article  Google Scholar 

  43. Gilson H. and Honig B., JACS 110 (1988) 1943–1350.

    Article  Google Scholar 

  44. Beppu Y. and Kakitani T., Photochem. Photobiol 59 (1994) 660–669.

    Google Scholar 

  45. Hudson B. S., Kohler B. E. and Schulten K., Linear polyene electronic structure and potential surfaces.In Edward C. Lim, editor, Excited States, volume 6, pages 1–95. Academic Press, (1982).

    Google Scholar 

  46. Tavan P. and Schulten K., Phys. Rev. B 36 (8) (1987) 4337–4358.

    Article  ADS  Google Scholar 

  47. Du P. and Davidson R., J. Phys. Chem. 94 (1990) 7013–1020.

    Article  Google Scholar 

  48. Graham R. and Freed K., J. Chem. Phys. 96 (1992) 1304–1316.

    Article  ADS  Google Scholar 

  49. Rai S. and Buenker R., Indian Jornal of Chemistry 31 (1992) 215–218.

    Google Scholar 

  50. Serrano-Andreas L., Merchan M., Nebot-Gil I., Nebot-Gil, I. and Roos B., J. Chem. Phys. 98 (1993) 3151–3162.

    Article  ADS  Google Scholar 

  51. Olivucci M., Bernardi F., Celani P., Ragazos I. and Robb M. A., J. Am. Chem. Soc. 116 (1994) 1077–1085.

    Article  Google Scholar 

  52. Schulten K. and Karplus M., Chem. Phys. Lett. 14(3) (1972) 305–309.

    ADS  Google Scholar 

  53. Tavan P. and Schulten K., J. Chem. Phys. 70(12) (1979) 5407–5413.

    Article  ADS  Google Scholar 

  54. Olivucci M., Bernardi F., Ottani S. and Robb M. A., J. Am. Chem. Soc. 116 (1994) 2034–2048.

    Article  Google Scholar 

  55. Bonacic-Koutecky V., Schoffel K. and Michl. J., Theoret. Chim Acta 72 (1987) 459–474.

    Article  Google Scholar 

  56. Roos B., Taylor P. and Siegbahn P., Chem. Phys. 48 (1980) 157.

    Article  MathSciNet  Google Scholar 

  57. Lengsfield B., J. Chem. Phys. 73 (1980) 382.

    Article  ADS  Google Scholar 

  58. Ragos I., Robb M., Bernardi F. and Olivucci M., Chem. Phys. Lett. 197 (1992) 217.

    Google Scholar 

  59. Olivucci M., Ragazos I., Bernardi F. and Robb M., J. Am. Chem. Soc. 115 (1993) 3710–3721.

    Article  Google Scholar 

  60. Langhoff S. and Davidson E., Int. J. Quantum Chem. 8 (1974) 61.

    Article  Google Scholar 

  61. Hay P. and Shavitt I., J. Chem. Phys. 60 (1974) 2865.

    Article  ADS  Google Scholar 

  62. Pople J., Seeger R. and Krishnan R., Int. J. Quantum Chem. Symp. 11 (1977) 149.

    Article  Google Scholar 

  63. Tavan P. and Schulten K., J. Chem. Phys. 72(6) (1980) 3547–3576.

    Article  MathSciNet  ADS  Google Scholar 

  64. Tavan P. and Schulten K., J. Chem. Phys. 85(11) (1986) 6602–6609.

    Article  ADS  Google Scholar 

  65. Raghavachari K. and Pople J., Int. J. Quantum Chem. 20 (1981) 167.

    Article  Google Scholar 

  66. Serrano-Andreas L., Merchan M., Nebot-Gil I., Roos B. and Fulscher M., J. Am. Chem. Soc. 115 (1993) 6184–6197.

    Article  Google Scholar 

  67. Roos B., Merchan M., McDiarmid R. and Xing X., J. Am. Chem. Soc. 116 (1993) 5927–5936.

    Article  Google Scholar 

  68. Merchan M., Orti E. and Roos B., Chem. Phys. Lett. 226 (1994) 27–36.

    Google Scholar 

  69. Turner G. J., Miercke L. J. W., Thorgeirsson T. E., Kliger D. S., Betlach M. C. and Stroud R. M., Biochemistry 32 (1993) 1332–1337.

    Article  Google Scholar 

  70. Balashov S. P., Govindjee R., Kono M., Imasheva E., Lukashev E., Ebrey T. G., Crouch R. K., Menick D. R. and Feng Y., Biochemistry 32 (1993) 10331–10343.

    Article  Google Scholar 

  71. Kobayashi T., Terauchi M., Kouyama T., Yoshizawa M. and Taiji M., SPIE J. 1403 (1990) 407–416.

    Article  Google Scholar 

  72. Song L., El-Sayed M. A. and Lanyi J. K., Science 261 (1993) 891–894.

    Article  ADS  Google Scholar 

  73. Chandrasekhar J., Smith S. F. and Jorgensen W. L., J. Am. Chem. Soc. 107 (1985) 154.

    Article  Google Scholar 

  74. Madura J. D. and Jorgensen W. L., J. Am. Chem. Soc. 108 (1986) 2517.

    Article  Google Scholar 

  75. Miertus S., Scrocco E. and Tomasi J., Chem. Phys. 55 (1981) 117.

    Article  Google Scholar 

  76. Miertus S. and Tomasi J., Chem. Phys. 65 (1982) 239.

    Article  Google Scholar 

  77. Tannor D., Marten B., Murphy R., Friesner R., Sitkoff D., Nicholls A., Rignalda M., Doddard W., and Honig B., J. Am. Chem. Soc. 116 (1994) 11875–11882.

    Article  Google Scholar 

  78. Clementi E., Computational aspects for large chemical systems. In Lecture Notes in Chemistry. Springer, New York, (1980).

    Book  Google Scholar 

  79. Thole B. T. and van Duijnen P. T., Phys. Chem. 71 (1982) 211.

    Article  Google Scholar 

  80. Singh U. C. and Kollman P. A., J. Comp. Chem. 7 (1986) 718.

    Article  Google Scholar 

  81. Field M. J., Bash P. A. and Karplus M., J. Comp. Chem. 11 (6) (1990) 700–733.

    Article  Google Scholar 

  82. Bash P. A., Field M. J., Davenport R. C., Petsko G. A., Ringe D. and Karplus M., Biochemistry 30(1991) 5826– 5832.

    Article  Google Scholar 

  83. Gao J. and Xia X., Science 258 (1992) 631–635.

    Article  ADS  Google Scholar 

  84. Nina M., Smith J.C. and Roux B., J. Mol. Struc. (1993).

    Google Scholar 

  85. Du P., Racine S. C. and Davidson R., J. Phys. Chem. 94 (1990) 3944–3951.

    Article  Google Scholar 

  86. Kornyshev A. A. and Leikin S., Phys. Rev. A 40 (1989) 6431–6437.

    Article  ADS  Google Scholar 

  87. Warshel A., Computer Modelling of Chemical Reactions in Enzymes and Solutions John Wiley and Songs, Inc., New York, (1991).

    Google Scholar 

  88. Warshel A. and Aqvist J., Ann, Rev. Biophys. Biophys. Chem. 20 (1991) 267.

    Article  Google Scholar 

  89. Warshel A., Curr. Opinion Struct. Biol. 2 (1992) 230–236.

    Article  Google Scholar 

  90. Aquist J. and Warshel A.,Chem. Rev. 9 (1993) 2523–2544.

    Google Scholar 

  91. Berendsen H. and Mavri J., JPC 97 (1993) 13464–13468.

    Article  Google Scholar 

  92. Thompson M. and Schenter G., JPC 99 (1995) 6374–6386.

    Article  Google Scholar 

  93. Sheiner S., Advances in Biophysical Chemistry 3 (1993) 119–159.

    Google Scholar 

  94. Lanyi J., Nature 375 (1995) 461–463.

    Article  ADS  Google Scholar 

  95. Humphrey W., Xu D., Schulten K. and Sheves M., J. Phys. Chem.,Submitted. [Beckman Institute Technical Report TB-95–05].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Logunov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Logunov, I., Schulten, K. (1996). Quantum Chemistry of in situ Retinal: Study of the Spectral Properties and Dark Adaptation of Bacteriorhodopsin. In: Bicout, D., Field, M. (eds) Quantum Mechanical Simulation Methods for Studying Biological Systems. Centre de Physique des Houches, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09638-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09638-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60869-1

  • Online ISBN: 978-3-662-09638-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics