Density Functional Theory

  • N. C. Handy
Part of the Centre de Physique des Houches book series (LHWINTER, volume 4)

Abstract

The purpose of this course is to give an understanding of Density Functional Theory (DFT), as it is presently used in computational chemistry. Let us first understand why there has been a revival of interest in DFT by computational chemists.

Keywords

Helium Hydride Neon Nonin H2CO 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Almlof J., Faegri K. and Korsell K., J. Comput. Chem. b3 (1982) 385.CrossRefGoogle Scholar
  2. [2]
    Klopper W. and Kutzelnigg W., J. Chem. Phys., 96, 1991, 2020.Google Scholar
  3. [3]
    Slater J. C., Phys. Rev. 81 (1951) 385.Google Scholar
  4. [4]
    Dirac P. A. M., Cambridge Philos. Soc. 26 (1930) 376.ADSMATHCrossRefGoogle Scholar
  5. [5]
    Jones R. O., J. Chem. Phys. 71 (1979) 1300.Google Scholar
  6. [6]
    Bright Wilson E. in Rich A. and Davidson N. (Eds.). Structural Chemistry and Molecular Biology. Freeman W. H. San Francisco. (1968) 753.Google Scholar
  7. [7]
    Davidson E. R., ‘Reduced Density Matrices in Quantum Chemistry’. (Acad. Pr., New York) (1976).Google Scholar
  8. [8]
    Hohenberg P. and Kohn W., Phys. Rev. 136 (1964) 864.MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    Kohn W. and Sham L. J., Phys. Rev. A140 (1965) 1133.Google Scholar
  10. [10]
    Frisch M. J., Trucks G. W., Head-Gordon M., Gill P. M. W., Wong M. W., Foresman J. B., Johnson B. G., Schlegel H. B., Robb M. A., Replogle E. S., Gomperts R., Andres J. L., Raghavachari K., Binkley J. S., Gonzales C., Martin R. L., Fox D. J., DeFrees D. J., Baker J., Stewart J. J. P., Pople J. A., Gaussian Inc.,Pittsburgh Pa (1992).Google Scholar
  11. [11]
    The Cambridge Analytic Derivatives Package. Issue 6. Cambridge 1995. A suite of Quantum Chemistry and Density Functional programs developed by Amos R. D. with contributions from Alberts I. L., Andrews J. S., Colwell S. M., Handy N. C., Jayatilaka D., Knowles P. J., Kobayashi R., Koga N., Laidig K. E., Laming G. J., Maslen P. E., Murray C. W., Rice J. E., Sanz J., E. D. Simandiras, Stone A. J., Su M-D., Tozer D. J.Google Scholar
  12. [12]
    Pople J. A. and Nesbet R. K., J. Chem. Phys. 22 (1954) 571.ADSCrossRefGoogle Scholar
  13. [13]
    Pople J. A., Gill P. M. W. and Handy N. C., Int. J. Quantum Chem. Symp. (submitted).Google Scholar
  14. [14]
    Ceperley D. M. and Alder B. J., Phys. Rev. Lett. 45 (1980) 566.ADSCrossRefGoogle Scholar
  15. [15]
    Vosko S. J., Wilk L. and Nusair M., Can. J. Phys. 58 (1980) 1200.Google Scholar
  16. [16]
    Becke A. D., Phys. Rev. A38 (1988) 3098.ADSCrossRefGoogle Scholar
  17. [17]
    Colle R. and Salvetti O., Theor. Chim. Acta 37 (1975) 329.Google Scholar
  18. [18]
    Lee C., Yang W. and Parr R. G., Phys. Rev. B37 (1988) 385.Google Scholar
  19. [19]
    Miehlich B., Savin A., Stoll H. and Preuss H., Chem. Phys. Lett. 157 (1989) 200.Google Scholar
  20. [20]
    Becke A. D., J. Chem. Phys. 88 (1988) 2547.Google Scholar
  21. [21]
    Murray C. W., Handy N. C. and Laming G. J., Molec. Phys. 78 (1993) 997.Google Scholar
  22. [22]
    293; Sibirsk. Mat. Zh 18 132 (1977).Google Scholar
  23. [23]
    Gill P. M. W., Johnson B. G. and Pople J. A., Chem. Phys.Lett. 209 (1993) 506.ADSCrossRefGoogle Scholar
  24. [24]
    Andzelm J. and Wimmer E., J. Chem. Phys. 96 (1992) 1280.ADSCrossRefGoogle Scholar
  25. [25]
    St. Amant A. and Salahub D. R., Chem. Phys. Lett. 169 (1990) 387.Google Scholar
  26. [26]
    599; Becke A. D. and Dickson R. M., J. Chem. Phys. 92 (1990) 3610.ADSCrossRefGoogle Scholar
  27. [27]
    41; Ziegler T., Snijders J. G. and Baerends E. J., J. Chem. Phys. 74 (1981) 1271.Google Scholar
  28. [28]
    Delley B., J. Chem. Phys. 92 (1990) 508.ADSCrossRefGoogle Scholar
  29. [29]
    Handy N. C., Tozer D. J., Laming G. J., Murray C. W. and Amos R. D., Isr. J. Chem. 33 (1994) 331.Google Scholar
  30. [30]
    Levy M., Perdew J. P. and Sahni V., Phys. Rev. A30 (1984) 2745.ADSGoogle Scholar
  31. [31]
    Perdew J. P., Parr R. G., Levy M. and Balduz J. L., Phys. Rev. Lett. 49 (1982) 1691.Google Scholar
  32. [32]
    Perdew J. P. and Burke K., Int. J. Quantum Chem. Symp. (1995).Google Scholar
  33. [33]
    Perdew J. P. and Wang Y., Phys. Rev. B33 (1986) 8800.ADSCrossRefGoogle Scholar
  34. [34]
    Perdew J. P., Chevary J. A., Vosko S. H., Jackson K. A., Pederson M. R., Singh D. J. and Fiolhais C., Phys. Rev. B46 (1992) 6671.ADSCrossRefGoogle Scholar
  35. [35]
    Becke A. D. and Roussel M. R., Phys. Rev. A39 (1989) 3761.ADSCrossRefGoogle Scholar
  36. [36]
    Becke A. D., Int. J. Quantum Chem. Symp. 28 (1994) 625.CrossRefGoogle Scholar
  37. [37]
    Curtiss L. A., Raghavachari K., Trucks G. W. and Pople J. A., J. Chem. Phys. 94 (1991) 7221.Google Scholar
  38. [38]
    Lee T. J. and Scuseria G. E., To appear in Quantum Chemistry for Chemical Accuracy. Ed. S. R. Langhoff. Google Scholar
  39. [39]
    Martin J. M. L., Lee T. J., Taylor P. R. and Francois J-P., Molec. Phys.Google Scholar
  40. [40]
    Martin J. M. L., Lee T. J. and Taylor P. R., J. Molec. Spectrosc. 160 (1993) 105.ADSCrossRefGoogle Scholar
  41. [41]
    Johnson B. G., Gill P. M. W. and Pople J. A., J. Chem. Phys. 98 (1993) 5612.ADSGoogle Scholar
  42. [42]
    Laming G. J., Termath V. and Handy N. C., J. Chem. Phys.99 (1993) 5585.CrossRefGoogle Scholar
  43. [43]
    Pople J. A., Head-Gordon M., Fox D. J., Raghavachari K. and Curtiss L. A., J. Chem. Phys. 90 (1989) 5622.ADSCrossRefGoogle Scholar
  44. [44]
    Neumann R., Nobes R. H. and Handy N. C., Molec. Phys. (submitted) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • N. C. Handy
    • 1
  1. 1.Department of ChemistryUniversity of CambridgeCambridgeUK

Personalised recommendations