Advertisement

Quantal Density Functional Theory

  • Viraht Sahni
Chapter

Abstract

Quantal density functional theory (Q-DFT) is a local effective potential energy theory [1]–[8] along the lines of Slater theory [9, 10] and traditional Hohenberg-Kohn-Sham density functional theory [11]–[14]. The basic idea, in common with Kohn-Sham density functional theory (KS-DFT) to be described more fully in the next chapter, is the construction of a model system of noninteracting Fermions whereby the density ρ(r t)/ρ(r) and energy E(t) / E equivalent to that of Schrödinger theory is obtained. Since these Fermions are noninteracting, their effective potential energy υ s (r t) / υ s (r) is the same. The corresponding quantum mechanical operator representative of this potential energy is therefore multiplicative, and it is said to be a local operator. We refer to this model as the S system, S being a mnemonic for ‘single Slater’ determinant. Within Q-DFT the potential energy of the noninteracting Fermions is defined explicitly in terms of the various electron correlations that must be accounted for by the S system. It is also possible to construct in the framework of Q-DFT, S systems such that the density and energy of both Hartree and Hartree-Fock theories is obtained. In a following chapter we will describe a Q-DFT whereby a system of noninteracting Bosons — the B system — is constructed such that the density and energy equivalent to that of Schrödinger theory is once again determined.

Keywords

Model Fermion Slater Determinant Electron Position Effective Potential Energy Fermi Hole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V Sahni, Phys. Rev. A 55, 1846 (1997)ADSCrossRefGoogle Scholar
  2. 2.
    V. Sahni, Top. Curr. Chem. 182, 1 (1996)CrossRefGoogle Scholar
  3. 3.
    Z. Qian and V. Sahni, Phys. Rev. A 57, 2527 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    Z. Qian and V. Sahni, Phys. Rev. B 62, 16 364 (2000)Google Scholar
  5. 5.
    V. Sahni, L. Massa, R. Singh, and M. Slamet, Phys. Rev. Lett. 87, 113 002 (2001);Google Scholar
  6. V. Sahni and X.Y. Pan, Phys. Rev. Lett. 90, 123 001 (2003)Google Scholar
  7. 6.
    M. Slamet and V. Sahni, Int. J. Quantum. Chem. 85, 436 (2001)CrossRefGoogle Scholar
  8. 7.
    Z. Qian and V. Sahni, Phys. Lett. A 247, 303 (1998)ADSCrossRefGoogle Scholar
  9. 8.
    Z. Qian and V. Sahni, Phys. Rev. A 63, 042 508 (2001)Google Scholar
  10. 9.
    J.C. Slater, Phys. Rev. 81, 385 (1951)ADSMATHCrossRefGoogle Scholar
  11. 10.
    J.C. Slater, T.M. Wilson, and J.H. Wood, Phys. Rev. 179, 28 (1969)ADSCrossRefGoogle Scholar
  12. 11.
    P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964)MathSciNetADSCrossRefGoogle Scholar
  13. 12.
    W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965)MathSciNetADSCrossRefGoogle Scholar
  14. 13.
    W. Kohn, in Highlights of Condensed Matter Theory, ed by F. Bassani, F. Fumi, and M.P. Tosi (North Holland, Amsterdam) 1, (1985)Google Scholar
  15. 14.
    E. Runge and E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984)ADSCrossRefGoogle Scholar
  16. 15.
    R. van Leeuwen, Phys. Rev. Lett. 82, 3863 (1999)CrossRefGoogle Scholar
  17. 16.
    N.T. Maitra and K. Burke, Phys. Rev. A 63, 042 501 (2001)Google Scholar
  18. 17.
    M.K. Harbola and V. Sahni, J. Chem. Ed 70, 920 (1993)CrossRefGoogle Scholar
  19. 18.
    J.P. Perdew, R.G. Parr, M. Levy, and J.L. Balduz, Phys. Rev. Lett. 49, 1691 (1982)ADSCrossRefGoogle Scholar
  20. 19.
    M. Levy, J.P. Perdew, and V. Sahni, Phys. Rev. A 30, 2745 (1984)ADSCrossRefGoogle Scholar
  21. 20.
    C.-O. Almbladh and U. von Barth, Phys. Rev. B 31, 3231 (1985)ADSCrossRefGoogle Scholar
  22. 21.
    D.R. Hartree, Proc. Cambridge Philos. Soc. 24, 39 (1928); 24, 111 (1928); 24, 426 (1928)Google Scholar
  23. 22.
    D.R. Hartree, The Calculation of Atomic Structures, John Wiley and Sons, Inc. New York 1957Google Scholar
  24. 23.
    V. Fock, Z. Phys. 61, 126 (1930)ADSMATHCrossRefGoogle Scholar
  25. 24.
    J.C. Slater, Phys. Rev. 35, 210 (1930)ADSCrossRefGoogle Scholar
  26. 25.
    M. Levy, Proc. Natl. Acad. Sci. USA 76, 6062 (1979)ADSCrossRefGoogle Scholar
  27. 26.
    P.W. Payne, J. Chem. Phys. 71, 190 (1979)CrossRefGoogle Scholar
  28. 27.
    A. Bolas, N.H. March, Y. Takahashi, and C. Zhang, Phys. Rev. A 48, 2708 (1993)ADSCrossRefGoogle Scholar
  29. 28.
    B.L. Moiseiwitsch, Variational Principles, John Wiley and Sons, Ltd, London 1966Google Scholar
  30. 29.
    J. Bardeen, Phys. Rev. 49, 653 (1936). (See footnote 18)Google Scholar
  31. 30.
    T. Koopmans, Physica 1, 104 (1933)ADSMATHCrossRefGoogle Scholar
  32. 31.
    V. Sahni and C.Q. Ma, Phys. Rev. B 22, 5987 (1980)ADSCrossRefGoogle Scholar
  33. 32.
    V. Sahni, Y. Li, and M.K. Harbola, Phys. Rev. A 45, 1434 (1992)ADSCrossRefGoogle Scholar
  34. 33.
    V. Sahni, Int. J. Quantum Chem. 56, 265 (1995)CrossRefGoogle Scholar
  35. 34.
    N.C. Handy, M.T. Marron, and H.J. Silverstone, Phys. Rev. 180, 45 (1969)MathSciNetADSCrossRefGoogle Scholar
  36. 35.
    L. Brillouin, Actualités sci. et ind vol. 71 (1933); vol. 159 (1934); vol. 160 (1934)Google Scholar
  37. 36.
    C. Moller and M.S. Plesset, Phys. Rev. 46, 618 (1934)ADSMATHCrossRefGoogle Scholar
  38. 37.
    J. Goodisman and W. Klemperer, J. Chem. Phys. 38, 721 (1963)ADSCrossRefGoogle Scholar
  39. 38.
    A. Holas and N.H. March, Top. Curr. Chem. 180, 57 (1996)CrossRefGoogle Scholar
  40. 39.
    E.K.U. Gross, E. Runge, and O. Heinonen, Many Particle Theory (IOP Publishing, 1991 )Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Viraht Sahni
    • 1
  1. 1.Department of PhysicsBrooklyn College and the Graduate School of the City University of New YorkBrooklyn, New YorkUSA

Personalised recommendations