Skip to main content

Part of the book series: Purinergic and Pyrimidinergic Signalling ((HEP,volume 151 / 1))

Abstract

With the unequivocal demonstration that purine and pyrimidine nucleosides and nucleotides function as key extracellular messengers in all mammalian tissue systems (Ralevic and Burnstock 1998), a major challenge has been to understand the factors that govern purine availability in the extracellular space and the dynamics of the process. The focus of the present chapter is to summarize recent knowledge on purine release under various physiological and pathophysiological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

BRL44408:

(±)2-((4,5-dihydro-1H-imidazol-2-yl)methyl)-2,3-dihydro-1methyl-1H-isoindole

6-OHDA:

6-hydroxydopamine

ACh:

acetylcholine

ADP:

adenosine diphosphate

ANOVA:

analysis of variance

ATP:

adenosine 5′-triphosphate

CH-38083:

7,8-(methylenedioxi)-14? -alloberbanol

LPS:

bacterial lipopolysaccharide

LTD:

long-term depression

LTP:

long term potentiation

NA:

noradrenaline

PHAL:

Phaseolus vulgaris leucoagglutinin

SFi:

nucleus septofimbrialis

TS:

nucleus triangularis septi

vVNAB:

ventral part of the ventral noradrenergic bundle

References

  • Aberer W, Kostron H, Huber E, Winkler H (1978) A characterization of the nucleotide uptake by chromaffin granules of bovine adrenal medulla. Biochem J 172: 353–360

    PubMed  CAS  Google Scholar 

  • Atkinson DE (1968) The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry 7: 4030–4034

    Article  PubMed  CAS  Google Scholar 

  • Ballerini P, Rathbone MP, Di Iorio P, Renzetti A, Giuliani O, D’Alimonte I, Trubiani O, Caciagli F, Ciccarelli R (1996) Rat astroglial P2z (P2x7) receptors regulate intracellular calcium and purine release. Neuroreport 7: 2533–2537

    Article  PubMed  CAS  Google Scholar 

  • Barberis C, Daudet F, Charriere B, Guibert B, Leviel V (1983) Release of adenosine in vivo from cat caudate nucleus. Neurosci Lett 41.179–182

    Google Scholar 

  • Bender AS, Wu PH, Phillis JW (1981) The rapid uptake and release of [3H]adenosine by rat cerebral cortical synaptosomes. J Neurochem 36: 651–660

    Article  PubMed  CAS  Google Scholar 

  • Borst MM, Schrader J (1991) Adenine nucleotides release from isolated perfused guinea-pig hearts and extracellular formation of adenosine. Circ Res 68: 797–806

    Article  PubMed  CAS  Google Scholar 

  • Bodin P, Burnstock G (1998) Increased release of ATP from endothelial cells during acute inflammation. Inflamm Res 47: 351–354

    Article  PubMed  CAS  Google Scholar 

  • Braun N, Zhu Y, Krieglstein J, Culmsee C, Zimmermann H (1998) Upregulation of the enzyme chain hydrolyzing extracellular ATP after transient forebrain ischemia in the rat. J Neurosci 18: 4891–4900

    PubMed  CAS  Google Scholar 

  • Brock JA, Bridgewater M, Cunnane TC (1997) Beta-adrenoceptor mediated facilitation of NA and adenosine 5’-triphosphate release from sympathetic nerves supplying the rat tail artery. Br J Pharmacol 120: 769–776

    Article  PubMed  CAS  Google Scholar 

  • Bruns RF (1990) Adenosine receptors. Roles and pharmacology. Ann N Y Acad Sci 603: 211–225

    Article  PubMed  CAS  Google Scholar 

  • Buller KM, Khanna S, Sibbald JR, Day TA (1996) Central noradrenergic neurons signal via ATP to elicit vasopressin responses to haemorrhage. Neuroscience 73: 637–642

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G (1976) Do some cells release more than one transmitter? Neuroscience 1: 239–248

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G (1990) Noradrenaline and ATP as cotransmitters in sympathetic nerves. Neurochem Int 17: 357–368

    Article  PubMed  CAS  Google Scholar 

  • Cahill CM, White TD Sawynok J (1993) Involvement of calcium channels in depolarization-evoked release of adenosine from spinal cord synaptosomes J Neurochem 60: 886–893

    CAS  Google Scholar 

  • Cass CE, Young, JD, Baldwin SA (1998) Recent advances in the molecular biology of nucleoside transporters of mammalian cells. Biochem Cell Biol 76: 761–770

    Article  PubMed  CAS  Google Scholar 

  • Chaudry IH, Clemens MG Baue AE (1985) Uptake of ATP by tissues. In: Stone TW (ed) Purines: pharmacology and physiological roles. Macmillan, London pp 115–124

    Google Scholar 

  • Chen Y, Graham DI, Stone TW (1992) Release of endogenous adenosine and its metabolites by the activation of NMDA receptors in the rat hippocampus in vivo. Br J Pharmacol 106: 632–638

    Article  PubMed  CAS  Google Scholar 

  • Craig CG, White TD (1993) N-Methyl-D-aspartate-and non-N-methyl-D-aspartateevoked adenosine release from rat cortical slices: distinct purinergic sources and mechanisms of release. J Neurochem 60: 1073–1080

    Article  PubMed  CAS  Google Scholar 

  • Cunha RA, Vizi ES, Ribeiro JA, Sebastiao AM (1996) Preferential release of ATP and its extracellular catabolism as a source of adenosine upon high-but not low-frequency stimulation of rat hippocampal slices. J Neurochem 67: 2180–2187

    Article  PubMed  CAS  Google Scholar 

  • Cunha RA (2000) Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: different roles, different sources and different receptors Neurochem Int (2000) in press

    Google Scholar 

  • Daval J, Barberis C (1981) Release of radiolabelled adenosine derivatives from super-fused synaptosome beds. Biochem Pharmacol 30: 2559–2567

    Article  PubMed  CAS  Google Scholar 

  • Day TA, Sibbald JR, Khanna S (1993) ATP mediates an excitatory noradrenergic neuron input to supraoptic vasopressin cells. Brain Res 607: 341–344

    Article  PubMed  CAS  Google Scholar 

  • Doolette DJ (1997) Mechanism of adenosine accumulation in the hippocampal slice during energy deprivation. Neurochem Int 30: 211–223

    Article  PubMed  CAS  Google Scholar 

  • Dowdall MJ, Bony AF Whittier VP (1974) Adenosine triphosphate — a constituent of cholinergic synaptic vesicles. Biochem J 140: 1–12

    PubMed  CAS  Google Scholar 

  • Driessen B, von Kugelgen I, Starke K (1994a) Neural ATP release and its a 2 adrenoceptor-mediated modulation in guinea-pig vas deferens. NaunynSchmiedebergs Arch Pharmacol 348: 358–366

    Google Scholar 

  • Driessen B, von Kugelgen I, Starke K (1994b) P1-purinoceptor-mediated modulation of neural noradrenaline and ATP release in guinea-pig vas deferens. NaunynSchmiedebergs Arch Pharmacol 350: 42–48

    CAS  Google Scholar 

  • Driessen B, Starke K (1994) Modulation of neural noradrenaline and ATP release by angiotensin II and prostaglandin E2 in guinea-pig vas deferens. Naunyn-Schmiedebergs Arch Pharmacol 350: 618–625

    PubMed  CAS  Google Scholar 

  • Driessen B, Bultmann R, Goncalves J, Starke K (1996) Opposite modulation of noradrenaline and ATP release in guinea-pig vas deferens through prejunctional beta-adrenoceptors: evidence for the beta 2 subtype. Naunyn Schmiedebergs Arch Pharmacol 353: 564–571

    PubMed  CAS  Google Scholar 

  • Driessen B, Goncalves J, Szabo B (1996) Failure of tyramine to release neuronal ATP as a cotransmitter of noradrenaline in the guinea-pig vas deferens. Naunyn Schmiedebergs Arch Pharmacol 353: 175–183

    PubMed  CAS  Google Scholar 

  • Dubyak GR, El-Moatassim C (1995) Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides. Am J Physiol 265: C577–C606

    Google Scholar 

  • Edwards FA, Gibb AJ, Colquhoun D (1992) ATP receptor-mediated synaptic currents in the rat central nervous system. Nature 359: 144–147

    Article  PubMed  CAS  Google Scholar 

  • Ellis JL, Burnstock G (1989) Angiotensin neuromodulation of adrenergic and purinergic cotransmission in the guinea-pig vas deferens. Br J Pharmacol 97: 1157–1164

    Article  PubMed  CAS  Google Scholar 

  • Ellis JL, Burnstock G (1990) Neuropeptide Y neuromodulation of the co-transmitters ATP and noradrenaline in the guinea-pig vas deferens. Br J Pharmacol 100: 457–462

    Article  PubMed  CAS  Google Scholar 

  • Fallahi N, Broad RM, Jin S, Fredholm BB (1996) Release of adenosine from rat hippocampal slices by nitric oxide donors. J Neurochem 67: 186–193

    Article  PubMed  CAS  Google Scholar 

  • Farinas I, Solsona C, Marsal J (1992) Omega-conotoxin differentially blocks acetylcholine and adenosine triphosphate releases from torpedo synaptosomes. Neurosci 47: 641–648

    Article  CAS  Google Scholar 

  • Ferrari D. Chiozzi P, Falzoni S, et al. (1997b) Extracellular ATP triggers IL-1/3 release by activating the purinergic P2z receptor of human macrophages. J Immunol 159: 1451–1458

    PubMed  CAS  Google Scholar 

  • Filippini A, Taffs RF, Sitkovsky MV (1990) Extracellular ATP in T-lymphocyte activation: possible role in effector functions. Proc Natl Acad Sci USA 87: 8267–8271

    Article  PubMed  CAS  Google Scholar 

  • Fischer H, Prast H, Philippu A (1995) Adenosine release in the ventral striatum of the rat is modulated by endogenous nitric oxide. Eur J Pharmacol 275: R5 — R6

    Article  PubMed  CAS  Google Scholar 

  • Fischer MN, Newsholme EA (1984) Properties of rat heart adenosine kinase. Biochem J 221: 521–528

    Google Scholar 

  • Forrester T, Williams CA (1977) Release of adenosine triphosphate from isolated adult heart cells in response to hypoxia. J Physiol (Lond) 268: 371–390

    CAS  Google Scholar 

  • Franceschi C, Abbracchio MP, Barbier D, Ceruti S, Ferrari D, Iliou JP, Rounds S, Schubert P, Schulze-Lohoff P, Rassendren FA, Staub M, Volonte C, Wakade AR, Burnstock G (1996) Purines and cell death, Drug Dev Res 39: 442–449

    Article  CAS  Google Scholar 

  • Fredholm BB, Vernet L (1979) Release of [3H]nucleotides from [3H]adenine labelled hypothalamic synaptosomes. Acta Physiol Scand 106: 97–107

    Article  PubMed  CAS  Google Scholar 

  • Fredholm, BB, Sollevi A, Vernet L, Hedquist P (1980) Inhibition by dipyridamole of stimulated purine release. Naunyn Schmiedebergs Arch Pharmacol 313, R18

    Google Scholar 

  • Fredholm BB, Dunwiddie TV, Bergman B, Lindström K (1984) Levels of adenosine and adenine nucleotides in slices of rat hippocampus, Brain Res 295: 127–136

    Article  PubMed  CAS  Google Scholar 

  • Gaillet S, Alonso G, Le Borgne R, Barbanel G, Malaval F, Assenmacher I, Szafarczyk A (1993) Effects of discrete lesions in the ventral noradrenergic ascending bundle on the corticotropic stress response depend on the site of the lesion and on the plasma levels of adrenal steroids. Neuroendocrinol 58: 408–419

    Article  CAS  Google Scholar 

  • Gartside SE, Suaud-Chagny MF, Tappaz M (1995) Evidence that activation of the hypothalamo-pituitary-adrenal axis by electrical stimulation of the noradrenergic Al group is not mediated by noradrenaline. Neuroendocrinology 62: 2–12

    Article  PubMed  CAS  Google Scholar 

  • Geiger JD, Nagy JI (1984) Heterogeneous distribution of adenosine transport sites labelled by H-nitrobenzylthioinosine in rat brain: an autoradiographic and membrane binding study. Brain Res Bull 13: 657–666

    Article  PubMed  CAS  Google Scholar 

  • Geiger JD, Johnston ME, Yago V (1988) Pharmacological characterization of rapidly accumulated adenosine by dissociated brain cells from adult rat. J Neurochem 51: 283–291

    Article  PubMed  CAS  Google Scholar 

  • Goncalves J, Bultmann R, Driessen B (1996) Opposite modulation of cotransmitter release in guinea-pig vas deferens: increase of noradrenaline and decrease of ATP release by activation of prejunctional beta-adrenoceptors. Naunyn Schmiedebergs Arch Pharmacol 353: 184–192

    Article  PubMed  CAS  Google Scholar 

  • Gu JG, Foga IO, Parkinson FE, Geiger JD (1995) Involvement of bidirectional adenosine transporters in the release of L-[3H]adenosine from rat brain synaptosomal preparations. J Neurochem 64: 2105–2110

    Article  PubMed  CAS  Google Scholar 

  • Hagberg H, Andersson P, Lacarewicz J, Jacobson I, Butcher S, Sandberg M, (1987) Extracellular adenosine inosine hypoxanthine and xanthine in relation to tissue nucleotides and purines in rat striatum during transient ischemia J Neurochem 49: 227–231

    CAS  Google Scholar 

  • Hamann M, Attwell D (1996) Non-synaptic release of ATP by electrical stimulation in slices of rat hippocampus, cerebellum and habenula. Eur J Neurosci 8: 1510–1515

    Article  PubMed  CAS  Google Scholar 

  • Hoehn K, White TD (1990a) N-Methyl-o-aspartate, kainate and quisqualate release endogenous adenosine from rat cortical slices. Neuroscience 39: 441–450

    Article  PubMed  CAS  Google Scholar 

  • Hoehn K, White TD (1990b) Role of excitatory amino acid receptors in K+ and glutamate-evoked release of endogenous adenosine from rat cortical slices. J Neurochem 54: 256–226

    Article  PubMed  CAS  Google Scholar 

  • Holton P (1959) The liberation of adenosine triphosphate on antidromic stimulation of sensory nerves. J Physiol (Lond) 145: 494–504

    CAS  Google Scholar 

  • Israel M, Meunier FM (1978) The release of ATP triggered by transmitter action and its possible physiological significance: retrograde transmission. J Physiol (Paris) 74: 485–490

    CAS  Google Scholar 

  • Jhamandas K, Dumbrille A (1980) Regional release of [3H]adenosine derivatives from rat brain in vivo: effect of excitatory amino acids, opiate agonists, and benzodiazepines. Can J Physiol Pharmacol 58: 1262–1278

    Article  PubMed  CAS  Google Scholar 

  • Jonzon B, Fredholm BB (1985) Release of purines, noradrenaline and GABA from rat hippocampal slices by field stimulation J Neurochem 44: 217–224

    CAS  Google Scholar 

  • Juranyi Z, Sperlagh B, Vizi ES (1999) Involvement of P2 purinoceptors and the nitric oxide pathway in [3H]purine outflow evoked by short-term hypoxia and hypoglycemia in rat hippocampal slices. Brain Res 823: 183–190

    Article  PubMed  CAS  Google Scholar 

  • Juranyi Z, Orso E, Janossy A, Szalay KS, Sperlagh B, Windisch K, Vinson GP, Vizi ES (1997) ATP and [3H]noradrenaline release and the presence of ecto-Ca(2+)ATPases in the capsule-glomerulosa fraction of the rat adrenal gland. J Endocrinol 153: 105–114

    Article  PubMed  CAS  Google Scholar 

  • Kasakov L, Ellis J, Kirkpatrick K, Milner P, Burnstock G (1988) Direct evidence for concomitant release of noradrenaline, adenosine 5’-triphosphate and neuropeptide Y from sympathetic nerve supplying the guinea-pig vas deferens. J Auton Nery Syst 22: 75–82

    Article  CAS  Google Scholar 

  • Katsuragi T, Tokunaga T, Ogawa S, Soejima O, Sato C, Furukawa T (1991) Existence of ATP-evoked ATP release system in smooth muscle. J Pharmacol Exp Ther 259: 513–518

    PubMed  CAS  Google Scholar 

  • Katsuragi T, Matsuo K, Sato C, Honda K, Kamiya H, Furukawa T (1996) Non-neuronal release of ATP and inositol 1,4,5-trisphosphate accumulation evoked by P2- and M-receptor stimulation in guinea pig ileal segments. J Pharmacol Exp Ther 277: 747–752

    PubMed  CAS  Google Scholar 

  • Kirkpatrick K, Burnstock G (1987) Sympathetic nerve-mediated release of ATP from the guinea-pig vas deferens is unaffected by reserpine. Eur J Pharmacol 138: 207–214

    Article  PubMed  CAS  Google Scholar 

  • Kirkpatrick KA, Burnstock G (1994) Release of endogenous ATP from the vasa deferentia of the rat and guinea pig by the indirect sympathomimetic tyramine. J Auton Pharmacol 14: 325–335

    Article  PubMed  CAS  Google Scholar 

  • Klein RL (1982) Chemical composition of the large noradrenergic vesicles. In: Klein RL, Lagercrantz H Zimmermann H (eds) Neurotransmitter vesicles. Academic Press, London pp 174–188

    Google Scholar 

  • Lagercrantz H, Stjarne L (1974) Evidence that most noradrenaline is stored without ATP in sympathetic large dense cored vesicles. Nature 249: 843–845

    Article  PubMed  CAS  Google Scholar 

  • Latini S, Pedata F, Pepeu G (1997) The contribution of different types of calcium channels to electrically-evoked adenosine release from rat hippocampal slices. Naunyn Schmiedebergs Arch Pharmacol 355: 250–255

    Article  PubMed  CAS  Google Scholar 

  • Latini S, Bordoni F, Pedata F, Corradetti (1999) Extracellular adenosine concentrations during in vitro ischaemia in rat hippocampal slices. Br J Pharmacol 127: 729–739

    CAS  Google Scholar 

  • Lee CW, Jarvis SM (1988) Kinetic and inhibitor specificity of adenosine transport in guinea-pig cerebral cortical synaptosomes: evidence for two nucleoside transporters. Neurochem. Int. 12: 483–492

    Google Scholar 

  • Lee K, Schubert P, Gribkoff V, Sherman B, Lynch G (1982) A combined in vivo/in vitro study of the presynaptic release of adenosine derivatives in the hippocampus. J Neurochem 38: 80–83

    Article  PubMed  CAS  Google Scholar 

  • Lew MJ, White TD (1987) Release of endogenous ATP during sympathetic nerve stimulation. Br J Pharmacol 92: 349–355

    Article  PubMed  CAS  Google Scholar 

  • Lloyd HG, Deussen A, Wuppermann H, Schrader J (1988) The transmethylathion pathway as a source of adenosine in the isolated guinea-pig hearts, Biochem J 252: 489–494

    PubMed  CAS  Google Scholar 

  • Lloyd HG, Lindstrom K, Fredholm BB (1993) Intracellular formation and release of adenosine from rat hippocampal slices evoked by electrical stimulation or energy depletion, Neurochem Int 23: 173–185

    Article  PubMed  CAS  Google Scholar 

  • Luqmani YA (1981) Nucleotide uptake by isolated cholinergic synaptic vesicles: evidence for a carrier of adenosine 5’-triphosphate. Neurosci 6: 1011–1021

    Article  CAS  Google Scholar 

  • MacDonald WF, White TD (1985) Nature of extasynaptosomal accumulation of endogenous adenosine evoked by K+ and veratridine. J Neurochem 45: 791–797

    Article  PubMed  CAS  Google Scholar 

  • Manzoni OJ, Manabe T, Nicoll RA (1994) Release of adenosine by activation of NMDA receptors in the hippocampus. Science 265: 2098–2101

    Article  PubMed  CAS  Google Scholar 

  • Marsal J, Solsona C, Rabasseda X, Blasi J Casanova A (1987) Depolarization-induced release of ATP from cholinergic synaptosomes is not blocked by botulinum toxin type A. Neurochem Int 10: 295–302

    Article  PubMed  CAS  Google Scholar 

  • Matsuo K, Katsuragi T, Fujiki S, Sato C, Furukawa T (1997) ATP release and contraction mediated by different P2-receptor subtypes in guinea-pig ileal smooth muscle. Br J Pharmacol 121: 1744–1748

    Article  PubMed  CAS  Google Scholar 

  • McCaman MW, McAfee DA (1986) Effects of synaptic activity on the metabolism and release of purines in the rat superior cervical ganglion Cell Molec Neurobiol 6: 349–362

    CAS  Google Scholar 

  • McMahon HT, Nicholls DG (1991) The bioenergetics of neurotransmitter release. Biochim. Biophys. Acta 1059: 243–264

    Google Scholar 

  • Meghji P, Newby AC (1990) Sites of adenosine formation, action and inactivation in the brain. Neurochem Int 16: 227–232

    Article  PubMed  CAS  Google Scholar 

  • Meghji P, Tuttle JB, Rubio R (1989) Adenosine formation and release by embryonic chick neurons and glia in cell culture. J Neurochem 53: 1852–1860

    Article  PubMed  CAS  Google Scholar 

  • Milusheva EA, Doda M, Baranyi M, Vizi ES (1996) Effect of hypoxia and glucose deprivation on ATP level adenylate energy charge and [Cal,, dependent and independent release of [3H]dopamine in rat striatal slices. Neurochem Int 28: 501–507

    Article  PubMed  CAS  Google Scholar 

  • Mitchell CH, Carre DA, McGlinn AM, Stone RA, Civan MM (1998) A release mechanism for stored ATP in ocular ciliary epithelial cells. Proc Natl Acad Sci USA 95: 7174–7178

    Article  PubMed  CAS  Google Scholar 

  • Morel N, Meunier FM (1981) Simultaneous release of acetylcholine and ATP from stimulated cholinergic synaptosomes. J Neurochem 36: 1766–1773

    Article  PubMed  CAS  Google Scholar 

  • Newby AC, Worku Y, Meghji P, Nakazawa M, Skladanowski AC (1990) Adenosine: a retaliatory metabolite or not? News in Phys Sci 5: 67–70

    CAS  Google Scholar 

  • Newman M, McIlwain H (1977) Adenosine as a constituent of the brain and of isolated cerebral tissues and its relationship to the generation of cyclic AMP Biochem J 164: 131–137

    CAS  Google Scholar 

  • Nitahara K, Kittel A, Liang SD Vizi ES (1995) A receptor mediated effect of adenosine on the release of acetylcholine from the myenteric plexus: role and localization of ectoATPase and 5’-nucleotidase. Neurosci 67: 159–168

    Article  CAS  Google Scholar 

  • Osipchuk Y, Cahalan M (1992) Cell-to-cell spread of calcium signals mediated by ATP receptors in mast cells. Nature 359: 241–244

    Article  PubMed  CAS  Google Scholar 

  • Palkovits M Catecholamines in the hypothalamus: an anatomical review. (1981) Neuroendocrinol 33:123–128

    Google Scholar 

  • Pankratov Y, Castro E, Miras-Portugal MT, Krishtal 0 (1998) A purinergic component of the excitatory postsynaptic current mediated by P2X receptors in the CAl neurons of the rat hippocampus. Eur J Neurosci 10: 3898–3902

    CAS  Google Scholar 

  • Pedata F, Pazzagli M, Tilli S, Pepu G (1990) Regional differences in the electrically stimulated release of endogenous and radioactive adenosine and purine derivatives from rat brain slices. Naunyn Schmiedebergs Arch Pharmacol 342: 447–453

    Article  PubMed  CAS  Google Scholar 

  • Pedata F, Pazzagli M, Pepeu G (1991) Endogenous adenosine release from hippocampal slices excitatory amino acid agonists stimulate release, antagonists reduce the electrically-evoked release. Naunyn-Schmiedebergs Arch Pharmacol 344: 538–543

    PubMed  CAS  Google Scholar 

  • Picano E, Abbracchio MP (2000) Adenosine, the imperfect endogenous anti-ischemic cardio-neuroprotector. Brain Res Bull 52: 75–82

    Article  PubMed  CAS  Google Scholar 

  • Phillis JW, O’Regan MH, Walter GA (1989) Effects of two nucleoside transport inhibitors, dypiridamole and soluflazine, on purine release from the rat cerebral cortex

    Google Scholar 

  • Phillis JW, Smith-Barbour M, O’Regan MH, Perkins LM (1994) Amino acid and purine release in rat brain following temporary middle cerebral artery occlusion. Neurochem Res 19: 1125–1130

    Article  PubMed  CAS  Google Scholar 

  • Potter P, White TD (1980) Release of adenosine 5’-triphosphate from synaptosomes from different regions of rat brain. Neurosci 5: 1351–1356

    Article  CAS  Google Scholar 

  • Potter PE, White TD (1982) Lack of effect of 6-hydroxydopamine pretreatment on depolarization-induced release of ATP from rat brain synaptosomes. Eur J Pharmacol 80: 143–147

    Article  PubMed  CAS  Google Scholar 

  • Pull I, Mcllwain H (1972) Adenine derivatives as neurohumoral agents in the brain. The quantities liberated on excitation of superfused cerebral tissues. Biochem J 130: 975–981

    Google Scholar 

  • Richardson PJ, Brown SJ, Bailyes EM, Luzio JP (1987) Ectoenzymes control adeno- sine modulation of immunoisolated cholinergic synapses Nature 327: 232–234

    CAS  Google Scholar 

  • Queiroz G, Gebicke-Haerter PJ, Schubert A, Starke K, von Kugelgen I Release of ATP from cultured rat astrocytes elicited by glutamate receptor activation. Neuroscience 1997 78: 1203–1208

    Article  PubMed  CAS  Google Scholar 

  • Rabasseda X, Solsona C, Marsal J, Egea G Bizzini B (1987) ATP release from pure cholinergic synaptosomes is not blocked by tetanus toxin. FEBS Lett 213: 337–340

    Article  PubMed  CAS  Google Scholar 

  • Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmac Rev 50: 413–492

    CAS  Google Scholar 

  • Richardson PJ, Brown SJ (1987) ATP release from affinity-purified rat cholinergic nerve terminals. J Neurochem 48: 622–630

    Article  PubMed  CAS  Google Scholar 

  • Robertson SJ, Edwards FA (1998) ATP and glutamate are released from separate neurones in the rat medial habenula nucleus: frequency dependence and adenosine-mediated inhibition of release. J Physiol (Lond) 508: 691–701

    Article  CAS  Google Scholar 

  • Schousboe A, Frandsen A, Drejer J (1989) Evidence for evoked release of adenosine and glutamate from cultured cerebellar granule cells Neurochem Res 14: 87 1875

    Google Scholar 

  • Schrader J (1990) Adenosine. A homeostatic metabolite in cardiac energy metabolism. Circulation 81: 389–391

    Article  PubMed  CAS  Google Scholar 

  • Schweitzer E (1987) Coordinated release of ATP and ACh from cholinergic synapto- somes and its inhibition by calmodulin antagonists. J Neurosci 7: 2948–2956

    PubMed  CAS  Google Scholar 

  • Schubert P, Lee K, West M, Deadwyler S, Lynch G (1976) Stimulation-dependent release of ‘H adenosine derivatives from central axon terminals to target neurones. Nature 260: 541–542

    Article  PubMed  CAS  Google Scholar 

  • Sedaa KO, Bjur RA, Shinozuka K, Westfall DP (1989) Nerve and drug-induced release of adenine nucleosides and nucleotides from rabbit aorta. J Pharmacol Exp Ther 252: 1060–1067

    Google Scholar 

  • Shinozuka K, Sedaa KO, Bjur RA, Westfall DP (1991) Participation by purines in the modulation of norepinephrine release by methoxamine. Eur J Pharmacol 192: 431–434

    Article  PubMed  CAS  Google Scholar 

  • Silinsky EM, Hubbard JI (1973) Release of ATP from motor nerve terminals. Nature 243: 404–405

    Article  PubMed  CAS  Google Scholar 

  • Smith AD (1979) Biochemical studies on the mechanism of release. In: Paton DM (ed) The release of catecholamines from adrenergic neurons. Pergamon Press, Oxford, pp 1–15

    Google Scholar 

  • Sperlâgh B, Toth E, Lajtha A, Vizi ES (1992) Effect of (—)-nicotine on the endogenous ATP release from rat striatum and cerebral cortex. Int J Purine Pyrimidine Res 3: 105

    Google Scholar 

  • Sperlâgh B, Vizi ES (1992) Is the neuronal ATP release from guinea-pig vas deferens subject to a2-adrenoceptor-mediated modulation? Neurosci 51: 203–209

    Article  Google Scholar 

  • Sperlâgh B, Kittel A, Lajtha A, Vizi ES (1995) ATP acts as fast neurotransmitter in rat habenula: neurochemical and enzyme cytochemical evidence. Neurosci 66: 915–920

    Article  Google Scholar 

  • Sperlâgh B, Vizi ES (1996) Neuronal synthesis, storage and release of ATP. Semin Neuroscis 8: 175–186

    Article  Google Scholar 

  • Sperlâgh B, Maglôczky Z, Vizi ES, Freund T (1998a) The triangular septal nucleus as the major source of ATP release in the rat habenula: a combined neurochemical and morphological study. Neurosci 86: 1195–1207

    Article  Google Scholar 

  • Sperlâgh B, Sershen H, Lajtha A, Vizi ES (1998b) Co-release of endogenous ATP and [3H]noradrenaline from rat hypothalamic slices: origin and modulation by a2adrenoceptors. Neurosci 82: 511–520

    Article  Google Scholar 

  • Sperlâgh B, Hask6 G, Németh ZH, Vizi ES (1998c) ATP released by lipopolysaccharide increases nitric oxide production in RAW 264.7 macrophages via P2Z/P2X7 receptors. Neurochem Int 33: 209–215

    Article  PubMed  Google Scholar 

  • Sperlâgh B, Mergl Z, Jurdnyi Z, Vizi ES, Makara GB (1999) Local regulation of vasopressin and oxytocin secretion by extracellular ATP in the isolated posterior lobe of the rat hypophysis. J Endocrinol 160: 343–350

    Article  PubMed  Google Scholar 

  • Stjaerne L (1989) Basic mechanisms and local modulation of nerve impulse-induced secretion of neurotransmitters from individual sympathetic nerve varicosities. Rev Physiol Biochem Pharmacol 112: 4–122

    Google Scholar 

  • Sun AY, Lee DZ (1985) Synaptosomal ADP uptake. J Neurochem 44: S90

    Google Scholar 

  • Sweeney MI (1997) Neuroprotective effects of adenosine in cerebral ischemia: window of opportunity. Neurosci Biobehav Rev 21: 207–217

    Article  PubMed  CAS  Google Scholar 

  • Sweeney MI, White TD, Sawynok J (1993) Morphine-evoked release of adenosine from the spinal cord occurs via nucleoside carrier with differential sensitivity to dipyridamole and nitrobenzylthioadenosine. Brain Res 614: 301–307

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Kusunoki M, Ishikawa Y, Kantoh M, Yamamura T, Utsunomiya J (1987) Adenosine 5’-triphosphate release evoked by electrical nerve stimulation from the guinea-pig gallbladder. Eur J Pharmacol 134: 77–82

    Article  PubMed  CAS  Google Scholar 

  • Tamesue S, Sato C, Katsuragi T (1998) ATP release caused by bradykinin, substance P and histamine from intact and cultured smooth muscles of guinea-pig vas defer-ens. Naunyn Schmiedebergs Arch Pharmacol 357: 240–244

    Article  PubMed  CAS  Google Scholar 

  • Terrian DM, Hernandez PG, Rea MA, Peters RI (1989) ATP release, adenosine formation and modulation of dynorphin and glutamic acid release by adenosine analogues in rat hippocampal mossy fiber synaptosomes. J Neurochem 53: 13901399

    Google Scholar 

  • Troadec JD, Thirion S, Nicaise G, Lemos JR, Dayanithi G 1998 ATP-evoked increases in [Ca2+]i and peptide release from rat isolated neurohypophysial terminals via a P2X2 purinoceptor. J Physiol (Lond) Aug 511: 89–103

    Article  CAS  Google Scholar 

  • Thorn JA, Jarvis SM (1996) Adenosine transporters. Gen Pharmacol 27: 613–620

    Article  PubMed  CAS  Google Scholar 

  • Todorov L, Mihaylova-Todorova S, Craviso GL, Bjur RA, Westfall TD (1996) Evidence for the differential release of the cotransmitters ATP and noradrenaline from sympathetic nerves of the guinea-pig vas deferens. J Physiol (Lond.) 496: 731–748

    CAS  Google Scholar 

  • Tohgi H, Suzuki H, Tamura K, Kimura B (1991) Platelet volume, aggregation and adenosine triphosphate release in cerebral thrombosis. Stroke 22: 17–21

    Article  PubMed  CAS  Google Scholar 

  • Tokunaga T, Katsuragi T, Sato C, Furukawa T (1993) ATP release evoked by isopre- naline from adrenergic nerves of guinea-pig atrium. Neurosci Lett 186: 95–98

    Article  Google Scholar 

  • Unsworth CD, Johnson RG (1990) Acetylcholine and ATP coreleased from the electromotor nerve terminals of Narcine brasiliensis by an exocytotic mechanism. Proc Natl Acad Sci USA 87: 553–557

    Article  PubMed  CAS  Google Scholar 

  • Van Belle H, Goosens F, Wynants J (19879 Formation and release of purine catabo- lites during hypoperfusion, anoxia and ischemia. Am J Physiol 252: H886–893

    Google Scholar 

  • Vial C, Owen P, Opie LH, Posel D (1987) Significance of release of adenosine triphosphate and adenosine induced by hypoxia or adrenaline in perfused rat heart. J Mol Cell Cardiol 19: 187–197

    Article  PubMed  CAS  Google Scholar 

  • Vizi ES, Hârsing LG Jr, Gaal J, Kapocsi J, Bernath S, Somogyi GT (1986) CH-38083, a selective, potent antagonist of alpha-2 adrenoceptors. J Pharmacol Exp Ther 238: 701–706

    PubMed  CAS  Google Scholar 

  • Vizi ES, Burnstock G (1988) Origin of ATP release in the rat vas deferens: concomitant measurement of 3H-noradrenaline and 14C-ATP. Eur J Pharmacol 158: 69–77

    Article  PubMed  CAS  Google Scholar 

  • Vizi ES, Sperlâgh B, Baranyi M (1992) Evidence that ATP, released from the postsynaptic site by noradrenaline, is involved in mechanical responses of guinea-pig vas deferens: cascade transmission. Neurosci 50: 455–465

    Article  CAS  Google Scholar 

  • Vizi ES, Liang SD, Sperlâgh B, Kittel A, Jurânyi Z (1997) Studies on the release and extracellular metabolism of endogenous ATP in rat superior cervical ganglion: support for neurotransmitter role of ATP. Neurosci 79: 893–903

    Article  CAS  Google Scholar 

  • Vizi ES, Sperlâgh B (1999) Receptor-and carrier-mediated release of ATP of postsynaptic origin: cascade transmission. Progr Brain Res 20: 159–169

    Article  Google Scholar 

  • Vizi ES, Nitahara K, Sato K, Sperlâgh B (2000) Stimulation-dependent release, breakdown, and action of endogenous ATP in mouse hemidiaphragm preparation: the possible role of ATP in neuromuscular transmission. J Auton Nery Syst 81: 278–284

    Article  CAS  Google Scholar 

  • Vizi ES (1998) Different temperature dependence of carrier-mediated (cytoplasmic) and stimulus-evoked (exocytotic) release of transmitter: a simple method to separate the two types of release. Neurochem Int 33: 359–366

    Article  PubMed  CAS  Google Scholar 

  • Volknandt W, Zimmermann H (1986) Acetylcholine, ATP, and proteoglycan are common to synaptic vesicles isolated from the electric organs of electric eel and electric catfish as well as from rat diaphragm. J Neurochem 47: 1449–1461

    Google Scholar 

  • von Kugelgen I, Starke K (1991) Release of noradrenaline and ATP by electrical stimulation and nicotine in guinea-pig vas deferens. Naunyn-Schmiedebergs Arch Pharmacol 344: 419–429

    Google Scholar 

  • von Kugelgen I, Allgaier C, Schobert C Starke K (1994) Co-release of noradrenaline and ATP from cultured sympathetic neurons. Neurosci 61: 199–202

    Article  Google Scholar 

  • Wang Y, Roman R, Lidofsky SD, Fitz JG (1996) Autocrine signaling through ATP release represents a novel mechanism for cell volume regulation. Proc Natl Acad Sci USA, 93: 12020–12025

    Article  PubMed  CAS  Google Scholar 

  • Westfall DP, Stitzel RE, Rowe JN (1978) The postjunctional effect and the neural release of purine compounds in the guinea-pig vas deferens. Eur J Pharmacol 50: 27–38

    Article  PubMed  CAS  Google Scholar 

  • Westfall DP, Sedaa K, Bjur RA (1987) Release of endogenous ATP from rat caudal artery. Blood Vessels 4: 125–127

    Google Scholar 

  • Wieraszko A, Goldsmith G, Seyfried TN (1989) Stimulation-dependent release of adenosine triphosphate from hippocampal slices. Brain Res 485: 244–250

    Article  PubMed  CAS  Google Scholar 

  • Worku Y, Newby AC (1983) The mechanism of adenosine production in rat polymorphonuclear leucocytes. Biochem J 214: 325–330

    PubMed  CAS  Google Scholar 

  • White TD (1977) Direct detection of depolarization-induced release of ATP from synaptosomal preparation. Nature 267: 67–79

    Article  PubMed  CAS  Google Scholar 

  • White TD (1978) Release of ATP from a synaptosomal preparation by elevated extra-cellular K+ and by veratridine. J Neurochem 30: 329–336

    Article  PubMed  CAS  Google Scholar 

  • White TD (1982) Release of ATP from isolated myenteric varicosities by nicotinic agonists. Eur J Pharmacol 79: 333–334

    Article  PubMed  CAS  Google Scholar 

  • White TD, Leslie RA (1982) Depolarization-induced release of adenosine 5’-triphosphate from isolated varicosities derived from the myenteric plexus of the guinea-pig small intestine. J Neurosci 2: 206–215

    PubMed  CAS  Google Scholar 

  • White TD, Al-Hummayd M (1983) Acetylcholine releases ATP from varicosities isolated from guinea-pig myenteric plexus. J Neurochem 40: 1069–1075

    Article  PubMed  CAS  Google Scholar 

  • Williams M (1989) Adenosine: the prototypic neuromodulator. Neurochem Int 14: 249–264

    Article  PubMed  CAS  Google Scholar 

  • Winkler H,Westhead E (1980) The molecular organization of adrenal chromaffin granules. Neurosci 5: 1803–1823

    Article  CAS  Google Scholar 

  • Wojcik WJ, Neff NH (1983) Location of adenosine release and adenosine A2 receptors to rat striatal neurons. Life Sci 33: 755–763

    Article  PubMed  CAS  Google Scholar 

  • Wu PH, Phillis JW (1978) Distribution and release of adenosine triphosphate in rat brain. Neurochem Res 3: 563–571

    Article  PubMed  CAS  Google Scholar 

  • Wu PH, Phillis JW (1984) Uptake by central nervous tissues as a mechanism for the regulation of extracellular adenosine concentrations. Neurochem Int 6: 613–632

    Article  PubMed  CAS  Google Scholar 

  • Yang SY, Cheek DJ, Westfall DP, Buxton ILO (1994) Purinergic axis in cardiac blood vessels: agonist-mediated release of ATP from cardiac endothelial cells. Circ Res 74: 401–407

    Article  PubMed  CAS  Google Scholar 

  • Zaidi ZF, Matthews, MR (1997) Exocytotic release from neuronal cell bodies, dendrites and nerve terminals in sympathetic ganglia of the rat, and its differential regulation. Neurosci 80: 861–891

    Article  CAS  Google Scholar 

  • Zhang J, Kornecki E, Jackman J, Ehrlich YH (1988) ATP secretion and extracellular protein phosphorylation by CNS neurons in primary culture. Brain Res Bull 21: 459–464

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann H (1978) Turnover of adenine nucleotides in cholinergie synaptic vesicles of the Torpedo electric organ. Neurosci 3: 827–836

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sperlágh, B., Vizi, E.S. (2001). Regulation of Purine Release. In: Abbracchio, M.P., Williams, M. (eds) Purinergic and Pyrimidinergic Signalling I. Purinergic and Pyrimidinergic Signalling, vol 151 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09604-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09604-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08742-4

  • Online ISBN: 978-3-662-09604-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics