Skip to main content

Purinergic Signalling in Development

  • Chapter
Purinergic and Pyrimidinergic Signalling I

Part of the book series: Purinergic and Pyrimidinergic Signalling ((HEP,volume 151 / 1))

Abstract

Most early studies of the roles of nucleotides in development have been discussed in terms of their intracellular roles and as a source of energy. However, since it is now generally accepted that purines and pyrimidines have potent extracellular actions mediated by the activation of specific membrane receptors (see Burnstock 1997), many of these previous studies can now be reinterpreted. ATP and adenosine play key roles from the very beginnings of life, i.e. the moment of conception. ATP is obligatory for sperm movement (Yeung 1986) and is a trigger for capacitation, the acrosome reaction necessary to fertilise the egg (Foresta et al. 1992). Extracellular ATP also promotes a rapid increase in Na+ permeability of the fertilised egg membrane through the activation of a specific ATP receptor (Kupitz and Atlas 1993). Mg2+-ATPase activity has been localised on the entire surface of unfertilised eggs and in pre- and post-implantation embryos (Smith et al. 1983; Ishikawa and Seguchi 1985). Together with the demonstration that ATP-activated spermatozoa show very high success rates in fertilisation tests (Foresta et al. 1992), this strongly suggests that ATP is a key sperm-to-egg signal in the process of fertilisation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbracchio MP (1997) ATP in brain function. In: Jacobson KA, Jarvis MF (eds) Purinergic approaches in experimental therapeutics. Wiley-Liss, New York, pp 383–404

    Google Scholar 

  • Abe Y, Sorimachi M, Itoyama Y, Furukawa K, Akaike N (1995) ATP responses in the embryo chick ciliary ganglion cells. Neuroscience 64: 547–551

    Article  PubMed  CAS  Google Scholar 

  • Adair TH, Montani JP, Strick DM, Guyton AC (1989) Vascular development in chick embryos: a possible role for adenosine. Am J Physiol 256: H240 - H246

    PubMed  CAS  Google Scholar 

  • Akasu T, Hirai K, Koketsu K (1981) Increase of acetylcholine-receptor sensitivity by adenosine triphosphate: a novel action of ATP on ACh-sensitivity. Br J Pharmacol 74: 505–507

    Article  PubMed  CAS  Google Scholar 

  • Allgaier C, Wellmann H, Schobert A, von Kügelgen I (1995a) Cultured chick sympathetic neurons: modulation of electrically evoked noradrenaline release by P2-purinoceptors. Naunyn Schmiedebergs Arch Pharmacol 352: 17–24

    PubMed  CAS  Google Scholar 

  • Allgaier C, Wellmann H, Schobert A, Kurz G, von Kugelgen I (1995b) Cultured chick sympathetic neurons: ATP-induced noradrenaline release and its blockade by nicotinic receptor antagonists. Naunyn Schmiedebergs Arch Pharmacol 352: 2530

    Google Scholar 

  • Bao JX, Eriksson IE, Stjärne L (1989) Age-related variations in the relative importance of noradrenaline and ATP as mediators of the contractile response of rat tail artery to sympathetic nerve stimulation. Acta Physiol Scand 136: 287–288

    Article  PubMed  CAS  Google Scholar 

  • Barker PM, Gatzy JT (1998) Effects of adenosine, ATP, and UTP on chloride secretion by epithelia explanted from fetal rat lung. Pediatr Res 43: 652–659

    Google Scholar 

  • Barnes EM Jr, Thampy KG (1982) Subclasses of adenosine receptors in brain membranes from adult tissue and from primary cultures of chick embryo. J Neurochem 39: 647–652

    Article  PubMed  CAS  Google Scholar 

  • Beaudoin AR (1976) Effect of adenosine triphosphate and adenosine diphosphate on the teratogenic action of trypan blue in rats. Biol Neonate 28: 133–139

    Article  CAS  Google Scholar 

  • Blair TA, Parenti M, Murray TF (1989) Development of pharmacological sensitivity to adenosine analogs in embryonic chick heart: role of A, adenosine receptors and adenylyl cyclase inhibition. Mol Pharmacol 35: 661–670

    PubMed  CAS  Google Scholar 

  • Bogdanov YD, Dale L, King BF, Whittock N, Burnstock G (1997) Early expression of a novel nucleotide receptor in the neural plate of Xenopus embryos. J Biol Chen 272: 12583–12590

    Article  CAS  Google Scholar 

  • Bogdanov Y, Rubino A, Burnstock G (1998) Characterisation of subtypes of the P2X and P2Y families of receptors in the foetal human heart. Life Sci 62: 697–703

    Article  PubMed  CAS  Google Scholar 

  • Brändle U, Kohler K, Wheeler-Schilling TH (1998) Expression of the P2X7-receptor subunit in neurons of the rat retina. Brain Res Mol Brain Res 62: 106–109

    Article  PubMed  Google Scholar 

  • Brown JF, Tepperman BL (1997) Ontogeny of nitric oxide synthase activity and endotoxin-mediated damage in the neonatal rat colon. Pediatr Res 41: 635–640

    Article  PubMed  CAS  Google Scholar 

  • Brownhill VR, Hourani SMO, Kitchen I (1996) Differential ontogeny of adenosine receptors in the longitudinal muscle and muscularis mucosae of the rat isolated duodenum. Eur J Pharmacol 317: 321–328

    Article  PubMed  CAS  Google Scholar 

  • Brownhill VR, Hourani SMO, Kitchen I (1997) Ontogeny of P2-purinoceptors in the longitudinal muscle and muscularis mucosae of the rat isolated duodenum. Br J Pharmacol 122: 225–232

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G (1990) Noradrenaline and ATP as cotransmitters in sympathetic nerves. Neurochem Int 17: 357–368

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G (1995) Noradrenaline and ATP: cotransmitters and neuromodulators. J Physiol Pharmacol 46: 365–384

    PubMed  CAS  Google Scholar 

  • Burnstock G (1996a) P2 Purinoceptors: historical perspective and classification. In: Chadwick DJ, Goode JA (eds) P2 purinoceptors: localization, function and transduction mechanisms. Ciba Foundation Symposium 198. John Wiley and Sons, Chichester, pp 1–29

    Google Scholar 

  • Burnstock G (1996b) Purinoceptors: ontogeny and phylogeny. Drug Dev Res 39: 204–242

    Article  CAS  Google Scholar 

  • Burnstock G (1997) The past, present and future of purine nucleotides as signalling molecules. Neuropharmacology 36: 1127–1139

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G, Wood JN (1996) Purinergic receptors: their role in nociception and primary afferent neurotransmission. Curr Opin Neurobiol 6: 526–532

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G, Cocks T, Crowe R, Kasakov L (1978) Purinergic innervation of the guinea-pig urinary bladder. Br J Pharmacol 63: 125–138

    Article  PubMed  CAS  Google Scholar 

  • Bynum JW (1980) Differential adenosine sensitivity in fibroblasts from different age donors. Exp Geront 15: 217–225

    Article  CAS  Google Scholar 

  • Cai G, Wang HY, Gao E, Horwitz J, Snyder DL, Pelleg A, Roberts J, Friedman E (1997) Reduced adenosine Al receptor and G alpha protein coupling in rat ventricular myocardium during aging. Circ Res 81: 1065–1071

    PubMed  CAS  Google Scholar 

  • Chapal J, Loubatières-Mariani MM, Roye M (1981) Effect of adenosine and phosphated derivatives on insulin release from the newborn dog pancreas. J Physiol (Paris) 77: 873–875

    CAS  Google Scholar 

  • Chechik BE, Sengupta S, Hibi T, Fernandes B (1985) Immunomorphological localization of adenosine deaminase in rat tissues during ontogeny. Histochem J 17: 153–170

    Article  PubMed  CAS  Google Scholar 

  • Chinsky JM, Ramamurthy V, Fanslow WC, Ingolia DE, Blackburn MR, Shaffer KT, Higley HR, Trentin JJ, Rudolph FB, Knudsen TB, Kellems RE (1990) Developmental expression of adenosine deaminase in the upper alimentary tract of mice. Differentiation 42: 172–183

    Article  PubMed  CAS  Google Scholar 

  • Clemow DB, Brunjes PC (1996) Development of 5’-nucleotidase staining in the olfac- tory bulbs of normal and naris-occluded rats. Int J Dev Neurosci 14: 901–911

    Article  PubMed  CAS  Google Scholar 

  • Clunes MT, Collett A, Baines DL, Bovell DL, Murphie H, Inglis SK, McAlroy HL, Olver RE, Wilson SM (1998) Culture substrate-specific expression of P2Y2 receptors in distal lung epithelial cells isolated from foetal rats. Br J Pharmacol 124: 845–847

    Article  PubMed  CAS  Google Scholar 

  • Collo G, Neidhart S, Kawashima E, Kosco-Vilbois M, North RA, Buell G (1997) Tissue distribution of the P2X, receptor. Neuropharmacology 36: 1277–1283

    Article  PubMed  CAS  Google Scholar 

  • Cooper J, Hill SJ, Alexander SP (1997) An endogenous A2B adenosine receptor coupled to cyclic AMP generation in human embryonic kidney (HEK 293) cells. Br J Pharmacol 122: 546–550

    Article  PubMed  CAS  Google Scholar 

  • Cothran DL, Lloyd TR, Taylor H, Linden J, Matherne GP (1995) Ontogeny of rat myocardial Al adenosine receptors. Biol Neonate 68: 111–118

    Article  PubMed  CAS  Google Scholar 

  • Crowe R, Burnstock G (1981) Perinatal development of quinacrine-positive neurons in the rabbit gastrointestinal tract. J Auton Nery Syst 4: 217–230

    Article  CAS  Google Scholar 

  • Crowley MR (1997) Oxygen-induced pulmonary vasodilation is mediated by adenosine triphosphate in newborn lambs. J Cardiovasc Pharmacol 30: 102–109

    Article  PubMed  CAS  Google Scholar 

  • Cuezva JM, Fernandez E, Valcarce C, Medina JM (1983) The role of ATP/ADP ratio in the control of hepatic gluconeogenesis during the early neonatal period. Biochim Biophys Acta 759: 292–295

    Article  PubMed  CAS  Google Scholar 

  • Dale N (1998) Delayed production of adenosine underlies temporal modulation of swimming in frog embryo. J Physiol (Lond) 511: 265–272

    Article  CAS  Google Scholar 

  • Dale N, Gilday D (1996) Regulation of rhythmic movements by purinergic neurotransmitters in frog embryos. Nature 383: 259–263

    Article  PubMed  CAS  Google Scholar 

  • Darnall RA, Bruce RD (1987) Effects of adenosine and xanthine derivatives on breathing during acute hypoxia in the anesthetized newborn piglet. Pediatr Pulmonol 3: 110–116

    Article  PubMed  CAS  Google Scholar 

  • Daval J-L, Werck MC, Nehlig A, Pereira de Vasconcelos A (1991) Quantitative autoradiographic study of the postnatal development of adenosine Al receptors and their coupling to G proteins in the rat brain. Neuroscience 40: 841–851

    Article  PubMed  CAS  Google Scholar 

  • De Mello MC, Ventura AL, Paes de Carvalho R, Klein WL, de Mello FG (1982) Regulation of dopamine-and adenosine-dependent adenylate cyclase systems of chicken embryo retina cells in culture. Proc Natl Acad Sci USA 79: 5708–5712

    Article  PubMed  Google Scholar 

  • Deckert J, Morgan PF, Daval JL, Nakajima T, Marangos PJ (1988) Ontogeny of adenosine uptake sites in guinea pig brain: differential profile of [H]nitrobenzylthioinosine and [3H]dipyridamole binding sites. Brain Res 470: 313–316

    PubMed  CAS  Google Scholar 

  • Deuchars S (1995) Effect of ATP and adenosine on sympathetic preganglionic neurons in a neonatal rat brainstem-spinal cord preparation. J Physiol (Lond) 489: 154 P

    Google Scholar 

  • Di Virgilio F, Zanovello P, Zambon A, Bronte V, Pizzo P, Murgia M (1995) Cell membrane receptors for extracelluar ATP: a new family of apoptosis-signalling molecules. Fundam Clin Immunol 3: 80–81

    Google Scholar 

  • Di Virgilio F, Chiozzi P, Falzoni S, Ferrari D, Sanz JM, Venketaraman V, Baricordi OR (1998) Cytolytic P2X purinoceptors. Cell Death Diff 5: 191–199

    Article  CAS  Google Scholar 

  • Doriat J-F, Humbert A-C, Daval J-L (1996) Brain maturation of high-affinity adenosine A2 receptors and their coupling to G-proteins. Brain Res Dev Brain Res 93: 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Dunwiddie TV (1985) The physiological role of adenosine in the central nervous system. Int Rev Neurobiol 27: 63–139

    Article  PubMed  CAS  Google Scholar 

  • Dusseau JW, Hutchins PM, Malbasa DS (1986) Stimulation of angiogenesis by adenosine on the chick chorioallantoic membrane. Circ Res 59: 163–170

    Article  PubMed  CAS  Google Scholar 

  • Edwards FA, Gibb AJ, Colquhoun D (1992) ATP receptor-mediated synaptic currents in the central nervous system. Nature 359: 144–147

    Article  PubMed  CAS  Google Scholar 

  • Egerman RS, Bissonnette JM, Hohimer AR (1993) The effects of centrally administered adenosine on fetal sheep heart rate accelerations. Am J Obst Gyneco1169: 866–869

    Google Scholar 

  • Elnazir B, Marshall JM, Kumar P (1996) Postnatal development of the pattern of respiratory and cardiovascular response to systemic hypoxia in the piglet: the roles of adenosine. J Physiol (Lond) 492: 573–585

    CAS  Google Scholar 

  • Eriksson H, Heilbronn E (1989) Extracellularly applied ATP alters the calcium flux through dihydropyridine-sensitive channels in cultured chick myotubes. Biochem Biophys Res Commun 159: 878–885

    Article  PubMed  CAS  Google Scholar 

  • Fissore R, O’Keefe S, Kiessling AA (1992) Purine-induced block to mouse embryo cleavage is reversed by compounds that elevate cyclic adenosine monophosphate. Biol Reprod 47: 1105–1112

    Article  PubMed  CAS  Google Scholar 

  • Foresta C, Rossato M, Di Virgilio F (1992) Extracellular ATP is a trigger for the acrosome reaction in human spermatozoa. J Biol Chem 267: 19443–19447

    PubMed  CAS  Google Scholar 

  • Francavilla S, Moscardelli S, Properzi G, De Matteis MA, Scorza Barcellona P, Natali PG, De Martino C (1987) Postnatal development of epididymis and ductus defer-ens in the rat. Cell Tissue Res 249: 257–265

    Article  PubMed  CAS  Google Scholar 

  • Franco R, Casado V, Ciruela F, Saura C, Mallol J, Canela EI, Huis C (1997) Cell surface adenosine deaminase: much more than an ectoenzyme. Prog Neurobiol 52: 283–294.

    Article  PubMed  CAS  Google Scholar 

  • Fraser RA, Ellis EM, Stalker AL (1979) Experimental angiogenesis in the chorioallantoic membrane. Bibl Anat 18: 25–27

    PubMed  Google Scholar 

  • Fredholm BB (1995) Adenosine receptors in the central nervous system. News Physiol Sci 10: 122–128

    CAS  Google Scholar 

  • Fredholm BB, Lerner U (1982) Metabolism of adenosine and 2’-deoxy-adenosine by fetal mouse calvaria in culture. Med Biol 60: 267–271

    PubMed  CAS  Google Scholar 

  • Fu W-M (1994) Potentiation by ATP of the postsynaptic acetylcholine response at developing neuromuscular synapses in Xenopus cell cultures. J Physiol (Lond) 477: 449–458

    CAS  Google Scholar 

  • Fu W-M (1995) Regulatory role of ATP at developing neuromuscular junctions. Prog Neurobiol 47: 31–44

    Article  PubMed  Google Scholar 

  • Fu W-M, Huang F-L (1994) Potentiation by endogenously released ATP of spontaneous transmitter secretion at developing neuromuscular synapses in Xenopus cell cultures. Br J Pharmacol 111: 880–886

    Article  PubMed  CAS  Google Scholar 

  • Fu W-M, Poo M-M (1991) ATP potentiates spontaneous transmitter release at developing neuromuscular synapses. Neuron 6: 837–843

    Article  PubMed  CAS  Google Scholar 

  • Fu WM, Chen YH, Lee KF, Liou JC (1997) Regulation of quantal transmitter secretion by ATP and protein kinases at developing neuromuscular synapses. Eur J Neurosci 9: 676–685

    Article  PubMed  CAS  Google Scholar 

  • Fukuda S, Katoh S, Yamamoto K, Hashimoto M, Kitao M (1990) Correlation between levels of plasma adenosine triphosphate and stress to the fetus at delivery. Biol Neonate 57: 150–154

    Article  PubMed  CAS  Google Scholar 

  • Funk GD, Parkis MA, Selvaratnam SR, Walsh C (1997) Developmental modulation of glutamatergic inspiratory drive to hypoglossal motoneurons. Respir Physiol 110: 125–137

    Article  PubMed  CAS  Google Scholar 

  • Furness JB, McLean JR, Burnstock G (1970) Distribution of adrenergic nerves and changes in neuromuscular transmission in the mouse vas deferens during postnatal development. Dev Biol 21: 491–505

    Article  PubMed  CAS  Google Scholar 

  • Furukawa K, Nomoto T (1989) Postnatal changes in response to adenosine and adenine nucleotides in rat duodenum. Br J Pharmacol 97: 1111–1118

    Article  PubMed  CAS  Google Scholar 

  • Gao E, Snyder DL, Roberts J, Friedman E, Cai G, Pelleg A, Horwitz J (1998) Age-related decline in ß-adrenergic and adenosine Al receptor function in the heart are attenuated by dietary restriction. J Pharmacol Exp Ther 285: 186–192

    PubMed  CAS  Google Scholar 

  • Gazdzik T, Kaminski M (1986) Evolution of localization of the reactions of adenosine triphosphatase (Mgr-ATP-ase), 5’nucleotidase (5’nt), alkaline phosphatase (AP), and acid phosphatase (AcP) in developing rat testis. I. Physiological conditions. Acta Histochem 79: 199–204

    Google Scholar 

  • Geiger JD, Nagy JI (1987) Ontogenesis of adenosine deaminase activity in rat brain. J Neurochem 48: 147–153

    Article  PubMed  CAS  Google Scholar 

  • Geiger JD, LaBella FS, Nagy JI (1984) Ontogenesis of adenosine receptors in the central nervous system of the rat. Brain Res Dev Brain Res 13: 97–104

    Article  CAS  Google Scholar 

  • Gerhart J, Danilchik M, Doniach T, Roberts S, Rowning B, Stewart R (1989) Cortical rotation of the Xenopus egg: consequences for the anteroposterior pattern of embryonic dorsal development. Development 107 [Suppl]: 37–51

    PubMed  Google Scholar 

  • Gershon MD, Thompson EB (1973) The maturation of neuromuscular function in a multiply innervated structure: development of the longitudinal smooth muscle of the foetal mammalian gut and its cholinergic excitatory, adrenergic inhibitory, and non-adrenergic inhibitory innervation. J Physiol (Lond) 234: 257–277

    CAS  Google Scholar 

  • Gibb AJ, Halliday FC (1996) Fast purinergic transmission in the central nervous system. Semin Neurosci 8: 225–232

    Article  CAS  Google Scholar 

  • Gobran LI, Rooney SA (1997) Adenylate cyclase-coupled ATP receptor and surfactant secretion in type II pneumocytes from newborn rats. Am J Physiol 272: L187 - L196

    PubMed  CAS  Google Scholar 

  • Gordon HW, Tkaczyk W, Peer LA, Bernhard WG (1963) The effect of adenosine triphosphate and its decomposition products on cortisone induced teratology. J Embryol Exp Morph 11: 475–482

    CAS  Google Scholar 

  • Gouyon JB, Guignard JP (1989) Adenosine in the immature kidney. Dev Pharmacol Ther 13: 113–119

    PubMed  CAS  Google Scholar 

  • Häggblad J, Heilbronn E (1987) Externally applied adenosine-5’-triphosphate causes inositol triphosphate accumulation in cultured chick myotubes. Neurosci Lett. 74: 199–204

    Article  PubMed  Google Scholar 

  • Häggblad J, Heilbronn E (1988) P2-purinoceptor-stimulated phosphoinositide turnover in chick myotubes. Calcium mobilization and the role of guanyl nucleotide-binding proteins. FEBS Lett 235: 133–136

    Google Scholar 

  • Häggblad J, Eriksson H, Heilbronn E (1985) ATP-induced cation influx in myotubes is additive to cholinergic agonist action. Acta Physiol Scand 125: 389–393.

    Article  PubMed  Google Scholar 

  • Hamberger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88: 49–92

    Article  Google Scholar 

  • Hashimoto M, Shinozuka K, Bjur RA, Westfall DP, Hattori K, Masumura S (1995) The effects of age on the release of adenine nucleosides and nucleotides from rat caudal artery. J Physiol (Lond) 489: 841–848

    CAS  Google Scholar 

  • Hatae J, Sperelakis N, Wahler GM (1989) Development of the response to adenosine during organ culture of young embryonic chick hearts. J Dev Physiol 11: 342–345

    PubMed  CAS  Google Scholar 

  • Hatori M, Teixeira CC, Debolt K, Pacifici M, Shapiro IM (1995) Adenine nucleotide metabolism by chondrocytes in vitro: role of ATP in chondrocyte maturation and matrix mineralization. J Cell Physiol 165: 468–474

    Article  PubMed  CAS  Google Scholar 

  • Henning SJ (1981) Postnatal development: coordination of feeding, digestion, and metabolism. Am J Physiol 241: G199 - G214

    PubMed  CAS  Google Scholar 

  • Henning RH, Nelemans A, Van den Akker J, Den Hertog A (1992) The nucleotide receptors on mouse C2C12 myotubes. Br J Pharmacol 106: 853–858

    Article  PubMed  CAS  Google Scholar 

  • Henning RH, Duin M, Den Hertog A, Nelemans A (1993a) Activation of the phospholipase C pathway by ATP is mediated exclusively through nucleotide type P2-purinoceptors in C2C12 myotubes. Br J Pharmacol 110: 747–752

    Article  PubMed  CAS  Google Scholar 

  • Henning RH, Duin M, Den Hertog A, Nelemans A (1993b) Characterization of P2purinoceptor mediated cyclic AMP formation in mouse C2C12 myotubes. Br J Pharmacol 110: 133–138

    Article  PubMed  CAS  Google Scholar 

  • Henning RH, Duin M, van Popta JP, Nelemans A, Den Hertog A (1996) Different mechanisms of Ca’ handling following nicotinic acetylcholine receptor stimulation, P2U-purinoceptor stimulation and Ktinduced depolarization in C2C12 myotubes. Br J Pharmacol 117: 1785–1791

    Article  PubMed  CAS  Google Scholar 

  • Herlenius E, Lagercrantz H, Yamamoto Y (1997) Adenosine modulates inspiratory neurons and the respiratory pattern in the brainstem of neonatal rats. Pediatr Res 42: 46–53

    Article  PubMed  CAS  Google Scholar 

  • Hilfer SR, Palmatier BY, Fithian EM (1977) Precocious evagination of the embryonic chick thyroid in ATP-containing medium. J Embryol Exp Morphol 42: 163–175

    Google Scholar 

  • Hill CE, Hirst GD, Van Helden DF (1983) Development of sympathetic innervation to proximal and distal arteries of the rat mesentery. J Physiol (Lond) 338: 129–147

    CAS  Google Scholar 

  • Hill CE, Hirst GD, Ngu MC, Van Helden DF (1985) Sympathetic postganglionic rein-nervation of mesenteric arteries and enteric neurones of the ileum of the rat. J Auton Nery Syst 14: 317–334

    Article  CAS  Google Scholar 

  • Hofman PL, Hiatt K, Yoder MC, Rivkees SA (1997) Al adenosine receptors potently regulate heart rate in mammalian embryos. Am J Physiol 273: R1374 — R1380.

    PubMed  CAS  Google Scholar 

  • Hourani SMO (1999) Postnatal development of purinoceptors in rat visceral smooth muscle preparations. Gen Pharmacol 32: 3–7

    Article  PubMed  CAS  Google Scholar 

  • Hourani SMO, Nicholls J, Lee BS, Halfhide EJ, Kitchen I (1993a) Characterization and ontogeny of P1-purinoceptors on rat vas deferens. Br J Pharmacol 108: 754–758.

    Article  PubMed  CAS  Google Scholar 

  • Hourani SMO, Shaw DA, Kitchen I (1993b) Ontogeny of purinoceptors in the rat colon muscularis mucosae. Pharmacol Commun 2: 317–322

    CAS  Google Scholar 

  • Hoyle CHV, Burnstock G (1991) ATP receptors and their physiological roles. In: Stone TW (ed) Adenosine in the nervous system. Academic Press, London, pp 43–76.

    Chapter  Google Scholar 

  • Hsu HH (1983) Purification and partial characterization of ATP pyrophosphohydro-lase from fetal bovine epiphyseal cartilage. J Biol Chem 258: 3463–3468

    PubMed  CAS  Google Scholar 

  • Hume RI, Hönig MG (1986) Excitatory action of ATP on embryonic chick muscle. J Neurosci 6: 681–690

    PubMed  CAS  Google Scholar 

  • Hume RI, Thomas SA (1988) Multiple actions of adenosine 5’-triphosphate on chick skeletal muscle. J Physiol (Lond) 406: 503–524

    CAS  Google Scholar 

  • Hung CT, Allen FD, Mansfield KD, Shapiro IM (1997) Extracellular ATP modulates [Ca’], in retinoic acid-treated embryonic chondrocytes. Am J Physiol 272: C1611 — C1617

    PubMed  CAS  Google Scholar 

  • Igawa Y, Mattiasson A, Andersson KE (1993) Functional importance of cholinergic and purinergic neurotransmission for micturition contraction in the normal, unanaesthetized rat. Br J Pharmacol 109: 473–479

    Article  PubMed  CAS  Google Scholar 

  • Igusa Y (1988) Adenosine 5’-triphosphate activates acetylcholine receptor channels in cultured Xenopus myotomal muscle cells. J Physiol (Loud) 405: 169–185

    CAS  Google Scholar 

  • Irie K, Furukawa K, Nomoto T, Fujii E, Muraki T (1994) Developmental changes in the response of rat isolated duodenum to nicotine. Eur J Pharmacol 251: 75–81

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa T, Seguchi H (1985) Localization of Mg*+-dependent adenosine triphosphatase and alkaline phosphatase activities in the postimplantation mouse embryos in day 5 and 6. Anat Embryol Berl 173: 7–11

    Article  PubMed  CAS  Google Scholar 

  • Ito S, Kimura A, Ohga A (1988) Development of non-cholinergic, non-adrenergic excitiatory and inhibitory responses to intramural nerve stimulation in rat stomach. Br J Pharmacol 93: 684–692

    Article  PubMed  CAS  Google Scholar 

  • Jenuth JP, Mably ER, Snyder FF (1996) Modelling of purine nucleoside metabolism during mouse embryonic development: relative routes of adenosine, deoxyadenosine, and deoxyguanosine metabolism. Biochem Cell Biol 74: 219–225

    Article  PubMed  CAS  Google Scholar 

  • Jin ZL, Lee TF, Zhou SJ, Wang LC (1993) Age-dependent change in the inhibitory effect of an adenosine agonist on hippocampal acetylcholine release in rats. Brain Res Bull 30: 149–152

    Article  PubMed  CAS  Google Scholar 

  • Johansson B, Georgiev V, Fredholm BB (1997) Distribution and postnatal ontogeny of adenosine A2A receptors in rat brain: comparison with dopamine receptors. Neuroscience 80: 1187–1207

    Article  PubMed  CAS  Google Scholar 

  • Keating MA, Duckett JW, Snyder HM, Wein AJ, Potter L, Levin RM (1990) Ontogeny of bladder function in the rabbit. J Urol 144: 766–769

    PubMed  CAS  Google Scholar 

  • Kidd EJ, Miller KJ, Sansum AJ, Humphrey PPA (1998) Evidence for P2X3 receptors in the developing rat brain. Neuroscience 87: 533–539

    Article  PubMed  CAS  Google Scholar 

  • Knudsen T, Elmer W-A (1987) Evidence for negative control of growth by adenosine in the mammalian embryo: induction of Hmxi+ mutant limb outgrowth by adenosine deaminase. Differentiation 33: 270–279

    Article  PubMed  CAS  Google Scholar 

  • Kolb H-A, Wakelam MJO (1983) Transmitter-like action of ATP on patched membranes of cultured myoblasts and myotubes. Nature 303: 621–623

    Article  PubMed  CAS  Google Scholar 

  • Konduri GG, Woodard LL (1991) Selective pulmonary vasodilation by low-dose infusion of adenosine triphosphate in newborn lambs. J Pediatr 119: 94–102

    Article  PubMed  CAS  Google Scholar 

  • Konduri GG, Woodard LL, Mukhopadhyay A, Deshmukh DR (1992a) Adenosine is a pulmonary vasodilator in newborn lambs. Am Rev Respir Dis 146: 670–676

    Article  PubMed  CAS  Google Scholar 

  • Konduri GG, Theodorou AA, Mukhopadhyay A, Deshmukh DR (1992b) Adenosine triphosphate and adenosine increase the pulmonary blood flow to postnatal levels in fetal lambs. Pediat Res 31: 451–457

    Article  PubMed  CAS  Google Scholar 

  • Konduri GG, Gervasio CT, Theodorou AA (1993) Role of adenosine triphosphate and adenosine in oxygen-induced pulmonary vasodilation in fetal lambs. Pediatr Res 33: 533–539

    Article  PubMed  CAS  Google Scholar 

  • Konduri GG, Mital S, Gervasio CT, Rotta AT, Forman K (1997) Purine nucleotides contribute to pulmonary vasodilation caused by birth-related stimuli in the ovine fetus. Am J Physiol 272: H2377 - H2384

    PubMed  CAS  Google Scholar 

  • Koos BJ, Mason BA, Ducsay CA (1993) Cardiovascular responses to adenosine in fetal sheep: autonomic blockade. Am J Physiol 264: H526 - H532

    PubMed  CAS  Google Scholar 

  • Kubo Y (1991a) Properties of ionic currents induced by external ATP in a mouse mesodermal stem cell line. J Physiol (Lond) 442: 691–710

    CAS  Google Scholar 

  • Kubo Y (1991b) Electrophysiological and immunohistochemical analysis of muscle differentiation in a mouse mesodermal stem cell line. J Physiol (Lond) 442: 711–741

    CAS  Google Scholar 

  • Kulkarni JS, Prywara DA, Wakade TD (1998) Adenosine induces apoptosis by inhibiting mRNA and protein synthesis in chick embryonic sympathetic neurons. Neurosci Lett 248: 187–190

    Article  PubMed  CAS  Google Scholar 

  • Kupitz Y, Atlas D (1993) A putative ATP-activated Na+ channel involved in sperm-induced fertilization. J Neurochem 63: S39

    Google Scholar 

  • Laasberg T (1990) Cat+-mobilizing receptors of gastrulating chick embryo. Comp Biochem Physiol C Comp Pharmacol 97: 1–12

    Article  Google Scholar 

  • Lagercrantz H, Yamamoto Y, Fredholm BB, Prabhakar NR, von Euler C (1984) Adenosine analogues depress ventilation in rabbit neonates. Theophylline stimulation of respiration via adenosine receptors? Pediatr Res 18: 387–390

    Article  PubMed  CAS  Google Scholar 

  • Lalo U, Kostyuk P (1998) Developmental changes in purinergic calcium signalling in rat neocortical neurones. Brain Res Dev Brain Res 11: 43–50

    Article  Google Scholar 

  • Laudignon N, Aranda JV, Varma DR (1990) Effects of adenosine and its analogues on isolated internal carotid arteries from newborn and adult pigs. Biol Neonate 58: 91–97

    Article  PubMed  CAS  Google Scholar 

  • Levin RM, Malkowicz SB, Jacobowitz D, Wein AJ (1981) The ontogeny of the autonomic innervation and contractile response of the rabbit urinary bladder. J Pharmacol Exp Ther 219: 250–257

    PubMed  CAS  Google Scholar 

  • Liang BT, Haltiwanger B (1995) Adenosine Ala and Alb receptors in cultured fetal chick heart cells. High-and low-affinity coupling to stimulation of myocyte contractility and cAMP accumulation. Cire Res 76: 242–251

    Google Scholar 

  • Liang SX, Phillips WD, Lavidis N (1998) Development of fast purinergic transmission in the mouse vas deferens. Proc Aust Neurosci Soc 9: 119

    Google Scholar 

  • Lohmann K (1929) Ãœber die pyrophosphat fraction in Muskel. Naturwissenschaften 17: 624–628

    CAS  Google Scholar 

  • Lohmann F, Drews U, Donie F, Reiser G (1991) Chick embryo muscarinic and purinergic receptors activate cytosolic Ca’ via phosphatidylinositol metabolism. Exp Cell Res 197: 326–329

    Article  PubMed  CAS  Google Scholar 

  • Lopes JM, Davis GM, Mullahoo K, Aranda JV (1994) Role of adenosine in the hypoxic ventilatory response of the newborn piglet. Pediatr Pulmonol 17: 50–55

    Article  PubMed  CAS  Google Scholar 

  • Loutradis D, John D, Kiessling AA (1989) Hypoxanthine causes a 2-cell block in random-bred mouse embryos. Biol Reprod 37: 311–316

    Article  Google Scholar 

  • Lu B, Fu W-M (1995) Regulation of postsynaptic responses by calcitonin gene related peptide and ATP at developing neuromuscular junctions. Can J Physiol Pharmacol 73: 1050–1056

    Article  PubMed  CAS  Google Scholar 

  • MacDonald A, McGrath JC (1984) Post-natal development of functional neurotransmission in rat vas deferens. Br J Pharmacol 82: 25–34

    Article  PubMed  CAS  Google Scholar 

  • Mainwaring RD, Mentzer RM, Jr., Ely SW, Rubio R, Berne RM (1985) The role of adenosine in the regulation of coronary blood flow in newborn lambs. Surgery 98: 540–546

    PubMed  CAS  Google Scholar 

  • Marangos PJ, Patel J, Stivers J (1982) Ontogeny of adenosine binding sites in rat forebrain and cerebellum. J Neurochem 39: 267–270

    Article  PubMed  CAS  Google Scholar 

  • Marangos PJ, Boulenger JP, Patel J (1984) Effects of chronic caffeine on brain adenosine receptors: regional and ontogenetic studies. Life Sci 34: 899–907

    Article  PubMed  CAS  Google Scholar 

  • Mason BA, Ogunyemi D, Punla O, Koos BJ (1993) Maternal and fetal cardiorespira- tory responses to adenosine in sheep. Am J Obstet Gynecol 168: 1558–1561

    PubMed  CAS  Google Scholar 

  • Matherne GP, Headrick JP, Berne RM (1990) Ontogeny of adenosine response in guinea pig heart and aorta. Am J Physiol 259: H1637 - H1642

    PubMed  CAS  Google Scholar 

  • Meghji P, Holmquist CA, Newby AC (1985) Adenosine formation and release by neonatal-rat heart cells in culture. Biochem J 229: 799–805

    PubMed  CAS  Google Scholar 

  • Meghji P, Tuttle JB, Rubio R (1989) Adenosine formation and release by embryonic chick neurons and glia in cell culture. J Neurochem 53: 1852–1860

    Article  PubMed  CAS  Google Scholar 

  • Meghji P, Skladanowski AC, Newby AC, Slakey LL, Pearson JD (1993) Effect of 5’deoxy-5’-isobutylthioadenosine on formation and release of adenosine from neonatal and adult rat ventricular myocytes. Biochem J 291: 833–839

    PubMed  CAS  Google Scholar 

  • Mehul B, Doyennette-Moyne M-E, Aubery M, Codogno P, Mannherz HG (1992) Enzymatic activity and in vivo distribution of 5’-nucleotidase, an extracellular matrix binding glycoprotein, during the development of chicken striated muscle. Exp Cell Res 203: 62–71

    Article  PubMed  CAS  Google Scholar 

  • Meyer MP, Clarke JDW, Patel K, Townsend-Nicholson A, Burnstock G (1999) Selective expression of purinoceptor cP2Y, suggests a role for nucleotide signalling in development of the chick embryo. Dev Dynam 214: 152–158

    Article  CAS  Google Scholar 

  • Mishra OP, Wagerle LC, Delivoria Papadopoulos M (1988) 5’-Nucleotidase and adenosine deaminase in developing fetal guinea pig brain and the effect of maternal hypoxia. Neurochem Res 13: 1055–1060

    Google Scholar 

  • Miyazaki H, Ohga A, Saito K (1982) Development of motor response to intramural nerve stimulation and to drugs in rat small intestine. Br J Pharmacol 76: 531540

    Google Scholar 

  • Modderman WE, Weidema AF, Vrijheid Lammers T, Wassenaar AM, Nijweide PJ (1994) Permeabilization of cells of hemopoietic origin by extracellular ATP4: elimination of osteoclasts, macrophages, and their precursors from isolated bone cell populations and fetal bone rudiments. Calcif Tissue Int 55: 141–150

    Article  PubMed  CAS  Google Scholar 

  • Morgan PF, Marangos PJ (1987) Ontogenetic appearance of the adenosine receptor precedes N-protein coupling in rat forebrain. Brain Res 432: 269–274

    PubMed  CAS  Google Scholar 

  • Morgan PF, Montgomery P, Marangos PJ (1987) Ontogenetic profile of the adenosine uptake sites in rat forebrain. J Neurochem 49: 852–855

    Article  PubMed  CAS  Google Scholar 

  • Morgan PF, Deckert J, Nakajima T, Daval J-L, Marangos PJ (1990) Late ontogenetic development of adenosine AI receptor coupling to associated G-proteins in guinea pig cerebellum but not forebrain. Mol Cell Biochem 92: 169–176

    Article  PubMed  CAS  Google Scholar 

  • Morin FC, Egan EA (1992) Pulmonary hemodynamics in fetal lambs during development at normal and increased oxygen tension. J Appl Physiol 73: 213–218

    PubMed  Google Scholar 

  • Mudumbi RV, Olson RD, Hubler BE, Montamat SC, Vestal RE (1995) Age-related effects in rabbit hearts of N6-R-phenylisopropyladenosine, an adenosine Al receptor agonist. J Gerontol A Biol Sci Med Sci 50: B351 — B357

    Article  PubMed  CAS  Google Scholar 

  • Müller J, Rocha JB, Battastini AM, Sarkis JJ, Dias RD (1993) Postnatal development of ATPase-ADPase activities in synaptosomal fraction from cerebral cortex of rats. Neurochem Int 23: 471–477

    Article  PubMed  Google Scholar 

  • Nagao T, Fujita A, Takeuchi T, Hata F (1994) Changes in neuronal contribution to contractile responses of vas deferens of young and adult guinea pigs. J Auton Nery Syst 50: 87–92

    Article  CAS  Google Scholar 

  • Nakaoka Y, Yamashita M (1995) Ca’ responses to acetylcholine and adenosine triphosphate in the otocyst of chick embryo. J Neurobiol 28: 23–34

    Article  PubMed  CAS  Google Scholar 

  • Neary JT, McCarthy M, Kang Y, Zuniga S (1998) Mitogenic signaling from P1 and P2 purinergic receptors to mitogen-activated protein kinase in human fetal astrocyte cultures. Neurosci Lett 242: 159–162

    Article  PubMed  CAS  Google Scholar 

  • Nicholls J, Hourani SM, Kitchen I (1990) The ontogeny of purinoceptors in rat urinary bladder and duodenum. Br J Pharmacol 100: 874–878

    Article  PubMed  CAS  Google Scholar 

  • Nicholls J. Hourani SMO, Kitchen I (1992) Degradation of extracellular adenosine and ATP by adult and neonate rat duodenum and urinary bladder. Pharmacol Commun 2: 203–210

    Google Scholar 

  • Nicolas F, Daval J-L (1993) Expression of adenosine Al receptors in cultured neurons from fetal rat brain. Synapse 14: 96–99

    Article  PubMed  CAS  Google Scholar 

  • Nureddin A, Esparo E, Kiessling AA (1990) Purines inhibit the development of mouse embryos in vitro. J Reprod Fertil 90: 455–446

    Article  PubMed  CAS  Google Scholar 

  • Oliveira EM, Rocha JB, Sarkis JJ (1994) In vitro and in vivo effects of HgC12 on synaptosomal ATP diphosphohydrolase (EC 3.6.1.5) from cerebral cortex of developing rats. Arch Int Physiol Biochim Biophys 102: 251–254

    Article  PubMed  CAS  Google Scholar 

  • Pâc L (1984) Contribution to ontogenesis of Merkel cells. Z Mikrosk Anat Forsch 98: 36–48

    PubMed  Google Scholar 

  • Paes de Carvalho R (1990) Development of Al adenosine receptors in the chick embryo retina. J Neurosci Res 25: 236–242

    Article  Google Scholar 

  • Paes de Carvalho R, de Mello FG (1982) Adenosine-elicited accumulation of adenosine 3’, 5’-cyclic monophosphate in the chick embryo retina. J Neurochem 38: 493–500

    Article  Google Scholar 

  • Paes de Carvalho R, de Mello FG (1985) Expression of A, adenosine receptors modulating dopamine-dependent cyclic AMP accumulation in the chick embryo retina. J Neurochem 44: 845–851

    Article  Google Scholar 

  • Paes de Carvalho R, Braas KM, Alder R, Snyder SH (1992) Developmental regulation of adenosine A, receptors, uptake sites and endogenous adenosine in the chick retina. Dev Brain Res 70: 87–95

    Article  CAS  Google Scholar 

  • Pagonopoulou O, Angelatou F (1992) Reduction of A, adenosine receptors in cortex, hippocampus and cerebellum in ageing mouse brain. Neuroreport 3: 735–737

    Article  PubMed  CAS  Google Scholar 

  • Park TS, Van Wylen DG, Rubio R, Berne RM (1987) Increased brain interstitial fluid adenosine concentration during hypoxia in newborn piglet. J Cereb Blood Flow Metab 7: 178–183

    Article  PubMed  CAS  Google Scholar 

  • Park MK, Garrad RC, Weisman GA, Turner JT (1997) Changes in P2Y, nucleotide receptor activity during the development of rat salivary glands. Am J Physiol 272: C1388 — C1393

    PubMed  CAS  Google Scholar 

  • Peachey JA, Brownhill VR, Hourani SM, Kitchen I (1996) The ontogenetic profiles of the pre-and postjunctional adenosine receptors in the rat vas deferens. Br J Pharmacol 117: 1105–1110

    Article  PubMed  CAS  Google Scholar 

  • Petrungaro S, Salustri A, Siracusa G (1986) Adenosine potentiates the delaying effect of dbcAMP on meiosis resumption in denuded mouse oocytes. Cell Biol Int Rep 10: 993

    Article  PubMed  CAS  Google Scholar 

  • Phillips JK (1998) Neuroreceptor mediated vascular control mechanisms in the rat. PhD Thesis. Australian National University, Canberra

    Google Scholar 

  • Popoli P, Betto P, Rimondini R, Reggio R, Pezzola A, Ricciarello G, Fuxe K, Ferre S (1998) Age-related alteration of the adenosine/dopamine balance in the rat stria-turn. Brain Res 795: 297–300

    Article  PubMed  CAS  Google Scholar 

  • Ren LM, Hoyle CHV, Burnstock G (1996) Developmental changes in sympathetic contraction of the circular muscle layer in the guinea-pig vas deferens. Eur J Pharmacol 318: 411–417

    Article  PubMed  CAS  Google Scholar 

  • Reppert SM, Weaver DR, Stehle JH, Rivkees SA (1991) Molecular cloning and characterization of a rat A,-adenosine receptor that is widely expressed in brain and spinal cord. Mol Endocrinol 5: 1037–1048

    Article  PubMed  CAS  Google Scholar 

  • Reynolds JD, Brien JF (1995) The role of adenosine A, receptor activation in ethanol-induced inhibition of stimulated glutamate release in the hippocampus of the fetal and adult guinea pig. Alcohol 12: 151–157

    Article  PubMed  CAS  Google Scholar 

  • Rivkees SA (1995) The ontogeny of cardiac and neural A, adenosine receptor expression in rats. Dev Brain Res 89: 202–213

    Article  CAS  Google Scholar 

  • Rolband GC, Furth ED, Staddon JM, Rogus EM, Goldberg AP (1990) Effects of age and adenosine in the modulation of insulin action on rat adipocyte metabolism. J Gerontol 45: B174 — B178

    Article  PubMed  CAS  Google Scholar 

  • Rooney SA, Gobran LI (1988) Adenosine and leukotrienes have a regulatory role in lung surfactant secretion in the newborn rabbit. Biochim Biophys Acta 960: 98–106

    Article  PubMed  CAS  Google Scholar 

  • Runold M, Lagercrantz H, Fredholm BB (1986) Ventilatory effect of an adenosine analogue in unanesthetized rabbits during development. J Appl Physiol 61: 255–259

    PubMed  CAS  Google Scholar 

  • Ruppelt A, Liang BT, Soto F (1999) Cloning, functional characterization and development expression of a P2X receptor from chick embryo. Prog Brain Res 120: 8192

    Google Scholar 

  • Sakai Y, Fukuda Y, Yamashita M (1996) Muscarinic and purinergic Ca’ mobilisation in the neural retina of early embryonic chick. Int J Dev Neurosci 14: 691–699

    Article  Google Scholar 

  • Salter MW, Hicks JL (1995) ATP causes release of intracellular Ca“ via the phospholipase Cß/IP, pathway in astrocytes from dorsal spinal cord. J Neurosci 15: 29612971

    Google Scholar 

  • Sawmiller DR, Fenton RA, Dobson JG Jr (1998) Myocardial adenosine A,-receptor sensitivity during juvenile and adult stages of maturation. Am J Physiol 274: H627 — H635

    PubMed  CAS  Google Scholar 

  • Schachter JB, Sromek SM, Nicholas RA, Harden TK (1997) HEK293 human embryonic kidney cells endogenously express the P2Y, and P2Y2 receptors. Neuropharmacology 36: 1181–1187

    Article  PubMed  CAS  Google Scholar 

  • Schiffmann SN, Vanderhaeghen JJ (1993) Age-related loss of mRNA encoding adenosine A2 receptor in the rat striatum. Neurosci Lett 158: 121–124

    Article  PubMed  CAS  Google Scholar 

  • Schoen SW, Leutenecker B, Kreutzberg GW, Singer W (1990) Ocular dominance plasticity and developmental changes of 5’-nucleotidase distributions in the kitten visual cortex. J Comp Neurol 296: 379–392

    Article  PubMed  CAS  Google Scholar 

  • Schoen SW, Kreutzberg GW, Singer W (1993) Cytochemical redistribution of 5’- nucleotidase in the developing cat visual cortex. Eur J Neurosci. 5: 210–222

    Article  PubMed  CAS  Google Scholar 

  • Senba E, Daddona PE, Nagy JI (1987a) Transient expression of adenosine deaminase in facial and hypoglossal motoneurons of the rat during development. J Comp Neurol 255: 217–230

    Article  PubMed  CAS  Google Scholar 

  • Senba E, Daddona PE, Nagy JI (1987b) Adenosine deaminase-containing neurons in the olfactory system of the rat during development. Brain Res Bull 18: 635–648

    Article  PubMed  CAS  Google Scholar 

  • Senba E, Daddona PE, Nagy JI (1987e) Development of adenosine deaminase-immunoreactive neurons in the rat brain. Brain Res 428: 59–71

    PubMed  CAS  Google Scholar 

  • Serio M, Montagnani M, Potenza MA. Mansi G, De Schaepdryver AF, Mitolo-Chieppa D (1996) Postnatal developmental changes of receptor responsiveness in rat mesenteric vascular bed. J Auton Pharmacol 16:63–68

    Google Scholar 

  • Shaw C, Hall SE, Cynader M (1986) Characterization, distribution, and ontogenesis of adenosine binding sites in cat visual cortex. J Neurosci 6: 3218–3228

    PubMed  CAS  Google Scholar 

  • Shimizu I,Toda N (1986) Alterations with age of the response to vasodilator agents in isolated mesenteric arteries of the beagle. Br J Pharmacol 89: 769–778

    Article  Google Scholar 

  • Shryock J, Patel A, Belardinelli I, Linden J (1989) Downregulation and desensitization of A,-adenosine receptors in embryonic chicken heart. Am J Physiol 25: H321 — H327

    Google Scholar 

  • Smith R, Köenig C, Pereda J (1983) Adenosinetriphosphatase ( Mg-ATPase) activity in the plasma membrane of preimplantation mouse embryo as revealed by electron microscopy. Anal Embryol Berl 168: 455–466

    Google Scholar 

  • Smuts MS (1981) Rapid nasal pit formation in mouse embryos stimulates by ATP-containing medium. J Exp. Zool 216: 409–414

    Article  PubMed  CAS  Google Scholar 

  • Sneddon P, McLees A (1992) Purinergic and cholinergic contractions in adult and neonatal rabbit bladder. Eur J Pharmacol 214: 7–12

    Article  PubMed  CAS  Google Scholar 

  • Sobrevia L, Yudilevich DL, Mann GE (1997) Activation of A2-purinoceptors by adenosine stimulates L-arginine transport (system y+) and nitric oxide synthesis in human fetal endothelial cells. J Physiol (Lond) 499: 135–140

    CAS  Google Scholar 

  • Sperlâgh B, Zsilla G, Baranyi M, Kékes-Szabo A, Vizi ES (1997) Age-dependent changes of presynaptic neuromodulation via A1-adenosine receptors in rat hippocampal slices. Int J Dev Neurosci 15: 739–747

    Article  PubMed  Google Scholar 

  • Sugioka M, Fukuda Y, Yamashita M (1996) Ca’ responses to ATP via purinoceptors in the early embryonic chick retina. J Physiol (Lond) 493: 855–863

    CAS  Google Scholar 

  • Sugioka M, Zhou WL, Hofmann HD, Yamashita M (1999) Involvement of P2 purinoceptors in the regulation of DNA synthesis in the neural retina of chick embryo. Int J Dev Neurosci 17: 135–144

    Article  PubMed  CAS  Google Scholar 

  • Tang Y-Y, Rovainen CM (1996) Cardiac output in Xenopus laevis tadpoles during development and in response to an adenosine agonist. Am J Physiol 270: R997 — R1004

    PubMed  CAS  Google Scholar 

  • Tassin AM, Häggblad J, Heilbronn E (1990) Receptor-triggered polyphosphoinositide turnover produces less cytosolic free calcium in cultured dysgenic myotubes than in normal myotubes. Muscle Nerve 13: 142–145

    Article  PubMed  CAS  Google Scholar 

  • Teuscher E, Weidlich V (1985) Adenosine nucleotides, adenosine and adenine as angiogenesis factors. Biomed Biochim Acta 44: 493–495

    PubMed  CAS  Google Scholar 

  • Thampy KG, Barnes EM Jr (1983a) Adenosine transport by primary cultures of neurons from chick embryo brain. J Neurochem 40: 874–879

    Article  PubMed  CAS  Google Scholar 

  • Thampy KG, Barnes EM Jr (1983b) Adenosine transport by cultured glial cells from chick embryo brain. Arch Biochem Biophys 220: 340–346

    Article  PubMed  CAS  Google Scholar 

  • Thomas SA, Hume RI (1990a) Permeation of both cations and anions through a single class of ATP-activated ion channels in developing chick skeletal muscle. J Gen Physiol 95: 569–590

    Article  PubMed  CAS  Google Scholar 

  • Thomas SA, Hume RI (1990b) Irreversible desensitization of ATP responses in developing chick skeletal muscle. J Physiol (Lond) 430: 373–388

    CAS  Google Scholar 

  • Thomas SA, Hume RI (1993) Single potassium channel currents activated by extra-cellular ATP in developing chick skeletal muscle: a role for second messengers. J Neurophysiol 69: 1556–1566

    PubMed  CAS  Google Scholar 

  • Thomas SA, Zawisa MJ, Lin X, Hume RI (1991) A receptor that is highly specific for extracellular ATP in developing chick skeletal muscle in vitro. Br J Pharmacol 103: 1963–1969

    Article  PubMed  CAS  Google Scholar 

  • Toubas PL, Sekar KC, Sheldon RE, Seale TW (1990) Fetal and newborn lambs differ in their cardiopulmonary responsiveness to adenosine agonists. Dev Pharmacol Ther 15: 68–81

    PubMed  CAS  Google Scholar 

  • Trezise DJ, Humphrey PPA (1996) Activation of peripheral sensory neurons in the neonatal rat tail by ATP Br J Pharmacol 117: 103 P

    Google Scholar 

  • Ueda H, Moritoki H (1991) Possible association of decrease of ATP-induced vascular relaxation with reduction of cyclic GMP during aging. Arch Int Pharmacodyn Ther 310: 35–45

    PubMed  CAS  Google Scholar 

  • Vanella A, Barcellona ML, Serra I, Ragusa N, Avola R, Avitabile M, Giuffrida AM (1983) Effect of undernutrition on some enzymes involved in the salvage pathway of purine nucleotides in different regions of developing rat brain. Neurochem Res 8: 151–158

    Article  PubMed  CAS  Google Scholar 

  • Vestal RE, Wood AJ, Shand DG (1979) Reduced ß-adrenoceptor sensitivity in the elderly. Clin Pharmacol Ther 26: 181–186

    PubMed  CAS  Google Scholar 

  • Wakade TD, Palmer KC, McCauley R, Przywara DA, Wakade AR (1995) Adenosine-induced apoptosis in chick embryonic sympathetic neurons: a new physiological role for adenosine. J Physiol (Lond) 488: 123–138

    CAS  Google Scholar 

  • Weaver DR (1996) A,-adenosine receptor gene expression in fetal rat brain. Brain Res Dev Brain Res 94: 205–223

    PubMed  CAS  Google Scholar 

  • Webb TE, Boluyt MO, Barnard EA (1996) Molecular biology of Pty purinoceptors: expression in rat heart. J Auton Pharmacol 16: 303–307

    Article  PubMed  CAS  Google Scholar 

  • Webb TE, Simon J, Barnard EA (1998) Regional distribution of [35S]2’-deoxy 5’-O-(1thio) ATP binding sites and the P2Y, messenger RNA within the chick brain. Neuroscience 84: 825–837

    Article  PubMed  CAS  Google Scholar 

  • Weber RG, Jones CR, Lohse MJ, Palacios JM (1990) Autoradiographic visualization of A, adenosine receptors in rat brain with [3H]8-cyclopentyl-1,3-dipropylxanthine. J Neurochem 54: 1344–1353

    Article  PubMed  CAS  Google Scholar 

  • Wells DG. Zawisa MJ, Hume RI (1995) Changes in responsiveness to extracellular ATP in chick skeletal muscle during development and upon denervation. Dev Biol 172: 585–590

    Article  PubMed  Google Scholar 

  • Wirkner K, Franke H, Inoue K, I11es P (1998) Differential age-dependent expression of a2-adrenoceptor-and P2 purinoceptor-functions in rat locus coeruleus neurons. Naunyn-Schmiedebergs Arch Pharmacol 357: 186–189

    Article  PubMed  CAS  Google Scholar 

  • Yamashita M, Sugioka M (1998) Calcium mobilization systems during neurogenesis. News Physiol Sci 13: 75–79

    PubMed  CAS  Google Scholar 

  • Yeung CH (1986) Temporary inhibition of the initiation of motility of demembranated hamster sperm by high concentrations of ATP. Int J Androl 9: 359–370

    Article  PubMed  CAS  Google Scholar 

  • Yoneyama Y, Power GG (1992) Plasma adenosine and cardiovascular responses to dipyridamole in fetal sheep. J Dev Physiol 18: 203–209

    PubMed  CAS  Google Scholar 

  • Yoshioka T (1989) Histochemical examination of adenosine nucleotidases in the developing rat spinal cord: possible involvement in enzymatic chain of ATP degradation. Acta Histochem Cytochem 22: 685–694

    Article  CAS  Google Scholar 

  • Yoshioka T, Tanaka 0 (1989) Histochemical localization of Ca2+, Mg2+-ATPase of the rat cerebellar cortex during postnatal development. Int J Dev Neurosci 7: 181–193

    CAS  Google Scholar 

  • Yoshioka T, Inomata K, Tanaka 0 (1987) Cytochemistry of Ca2+-ATPase in the rat spinal cord during embryonic development. Acta Histochem Cytochem 20: 511–526

    Article  CAS  Google Scholar 

  • Young ML, Ramza BM, Tan RC, Joyner RW (1987) Adenosine and hypoxia effects on atrioventricular node of adult and neonatal rabbit hearts. Am J Physiol 253: H1192 — H1198

    PubMed  CAS  Google Scholar 

  • Zagorodnyuk V, Hoyle CHV, Burnstock G (1993) An electrophysiological study of developmental changes in the innervation of the guinea-pig taenia coli. Pflugers Arch 423: 427–433

    Article  PubMed  CAS  Google Scholar 

  • Zderic SA, Duckett JW, Wein AJ, Snyder HM 3rd, Levin RM (1990) Development factors in the contractile response of the rabbit bladder to both autonomic and non-autonomic agents. Pharmacology 41: 119–123

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Galileo DS (1998) Widespread programme death in early developing chick optic tectum. Neuroreport 9: 2797–2801

    Article  PubMed  CAS  Google Scholar 

  • Zheng JS, Boluyt MO, O’Neill L, Crow MT, Lakatta EG (1994) Extracellular ATP induces immediate-early gene expression but not cellular hypertrophy in neonatal cardiac myocytes. Cire Res 74: 1034–1041

    Article  CAS  Google Scholar 

  • Zheng JS, Boluyt MO, Long X, O’Neill L, Lakatta EG, Crow MT (1996) Extracellular ATP inhibits adrenergic agonist-induced hypertrophy of neonatal cardiac myocytes. Cire Res 78: 525–535.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Burnstock, G. (2001). Purinergic Signalling in Development. In: Abbracchio, M.P., Williams, M. (eds) Purinergic and Pyrimidinergic Signalling I. Purinergic and Pyrimidinergic Signalling, vol 151 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09604-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09604-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08742-4

  • Online ISBN: 978-3-662-09604-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics