Skip to main content

P2Y Receptors: Structure and Function

  • Chapter

Part of the book series: Purinergic and Pyrimidinergic Signalling ((HEP,volume 151 / 1))

Abstract

Following the finding that nucleotides act as extracellular signalling molecules by interaction with cell surface transmembrane P2 receptors, it has now been recognised that this mode of regulation is widespread, exerting a ubiquitous influence on physiological function. Indeed, P2 receptors are present on most cells in the body (Ralevic and Burnstock 1998) P2 receptor regulation via disparate cell types is mirrored by the diversity of cellular responses that these receptors elicit on activation by endogenous nucleotides. This diversity in turn comes, in part from multiple P2 receptors, and in part from different responses to activation of the same receptors in different cell types. P2 receptors are subdivided into P2X receptors with intrinsic ion channels and G protein-coupled P2Y receptors (Abbracchio and Burnstock 1994; Fredholm et al. 1997). The wide spread distribution of multiple P2Y receptor subtypes represents an important challenge in characterising and classifying this subfamily of receptors in order to understand the manner in which their activation by native extracellular nucleotides gives rise to cognate cellular responses. It has been evident for some time that different P2Y receptor-subtypes can give rise to distinct cellular responses, even when two subtypes are located on the same cell, and even when both are coupled to a similar level of stimulation of phospholipase C. In this chapter, the relationships between the molecular and pharmacological properties of these P2Y receptors is discussed, as well as the contribution of structural diversity to the control of intracellular signalling pathways to understand at the cellular level how the different receptors of the P2Y subfamily generate appropriate functional responses. To pursue this objective, an overview of some current issues concerning the P2Y receptors is provided.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbracchio MP, Burnstock G (1994) Purinoceptors–are there families of P2X and P2Y purinoceptors? Pharmacol Therap 64: 445–475

    CAS  Google Scholar 

  • Albert JL, Boyle JP, Roberts JA, Challiss RAJ, Gubby SE, Boarder MR (1997) Regulation of brain capillary endothelial cells by P2Y receptors coupled to Ca’, phospholipase C and mitogen-activated protein kinase. Br J Pharmacol 122: 935–941

    Google Scholar 

  • Anwar Z, Albert JL, Gubby SE, Boyle JP, Roberts JA, Webb TE, Boarder MR (1999) Regulation of cyclic AMP by extracellular ATP in cultured brain capillary endothelial cells. Br J Pharmacol 128: 465–471

    Google Scholar 

  • Ayyanathan K, Webb TE, Sandhu AK, Athwal RS, Barnard EA, Kunapuli SP (1996) Cloning and chromosomal localization of the human P2Y, purinoceptor. Biochem Biophys Res Commun 218: 783–788

    PubMed  CAS  Google Scholar 

  • Boarder MR (1998) Cyclic AMP and tyrosine kinase cascades in the regulation of cellular function by P2Y nucleotide receptors. In: Turner JT, Weisman GA, Fedan JS (eds) The P2 nucoleotide receptors. Humana Press, Totowa NJ, pp 185–209

    Google Scholar 

  • Boarder MR, Hourani SMO (1998) The regulation of vascular function by P2 recep- tors: multiple sites and multiple receptors. Trends Pharmacol Sci 19: 99–107

    Google Scholar 

  • Boeynaems JM, Communi D, Janssens R, Motte S, Robaye B, Pirotton S (1998) Nucleotide receptors coupling to the phospholipase C signaling pathway. In: Turner JT, Weisman GA, Fedan JS (eds) The P2 nucoleotide receptors. Humana Press, Totowa NJ, pp 169–183

    Google Scholar 

  • Bogdanov YD, Dale L, King BF, Whittock N, Burnstock G (1997) Early expression of a novel nucleotide receptor in the neural plate of Xenopus embryos. J Biol Chem 272: 12583–12590

    PubMed  CAS  Google Scholar 

  • Bogdanov YD, Wildman SS, Clements MP, King BF, Burnstock G (1998) Molecular cloning and characterisation of rat P2Y4 nucleotide receptor. Br J Pharmacol 124: 428–430

    PubMed  CAS  Google Scholar 

  • Bowden A, Patel V, Brown C, Boarder MR (1995) Evidence for requirement of tyrosine phosphorylation in endothelial P2y purinoceptor and P2U purinoceptor stimulation of prostacyclin release. Br J Pharmacol 116: 2563–2568

    Google Scholar 

  • Boyer JL, Zohn IE, Jacobson KA, Harden TK (1994) Differential-effects of P2 purinoceptor antagonists on phospholipase C-coupled and adenylyl cyclasecoupled P2Y- purinoceptors. Br J Pharm 113: 614–620

    CAS  Google Scholar 

  • Boyer JL, O’Tuel JW, Fischer B, Jacobsen KA, Harden TK (1995) 2-Thioether derivatives of adenosine nucleotides are exceptionally potent agonists at adenylyl cyclase-linked P2Y-purinergic receptors. Br J Pharmacol 116: 2611–2616

    Google Scholar 

  • Boyer JL, Romero-Avila T, Schachter JB, Harden TK (1996) Identification of competitive antagonists of the P2Y, receptor. Mol Pharmacol 50: 1323–1329

    PubMed  CAS  Google Scholar 

  • Boyer JL, Waldo GL, Harden TK (1997) Molecular cloning and expression of an avian G protein-coupled ply receptor. Mol Pharmacol 52: 928–934

    PubMed  CAS  Google Scholar 

  • Boyer JL, Mohanram A, Camaioni E, Jacobsen KA, Harden TK (1998) Competitive and selective antagonism of P2Yi receptors by N6-methyl 2’-deoxyadenosine 3’,5’bisphosphate. Br J Pharmacol 124: 1–3

    PubMed  CAS  Google Scholar 

  • Brown C, Tanna B, Boarder MR (1995) PPADS — an antagonist at endothelial P2ypurinoceptors but not P2U-purinoceptors. Br J Pharmacol 116: 2413–2416

    Google Scholar 

  • Bultmann R, Trendelenburg M, Tuluc F, Wittenburg H, Starke K (1999) Concomitant blockade of P2X-receptors and ecto-nucleotidases by P2-receptor antagonists: functional consequences in rat vas deferens. Naunyn-Schmiedebergs Archiv Pharmacol 359: 339–344

    CAS  Google Scholar 

  • Burnstock G, Kennedy C (1985) Is there a basis for distinguishing 2 types of P2purinoceptor. Gen Pharmacol 16: 433–440

    PubMed  CAS  Google Scholar 

  • Chang KG, Hanoka K, Kumada M,Takuwa Y (1995) Molecular cloning and functional analysis of a novel P2 nucleotide receptor. J Biol Chem 270: 26152–26158

    CAS  Google Scholar 

  • Charlton SJ, Brown CA, Weisman GA, Turner JT, Erb L, Boarder MR (1996a) PPADS and suramin as antagonists at cloned P2y-and P2 -purinoceptors. Br J Pharmacol 118: 704–710

    Google Scholar 

  • Charlton SJ, Brown CA, Weisman GA, Turner JT, Erb L, Boarder MR (1996b) Cloned and transfected P2Y4 receptors: characterisation of a suramin and PPADSinsensitive response to UTP, Br J Pharmacol 119: 1301–1303

    Google Scholar 

  • Chen ZP, Krull N, Xu S, Levy A, Lightman SL (1996) Molecular cloning and functional characterisation of a rat pituitary G protein-coupled adenosine triphosphate ( ATP) receptor. Endocrinology 137: 1833–1840

    Google Scholar 

  • Communi D, Pirotton S, Parmentier M, Boeynaems JM. (1995) Cloning and functional expression of a human uridine nucleotide receptor. J Biol Chem 270: 30849–30852

    CAS  Google Scholar 

  • Communi D, Govaerts C, Parmentier M, Boeynaems JM (1997) Cloning of a human purinergic P2y receptor coupled to phospholipase C and adenylyl cyclase. J Biol Chem 272: 31969–31973

    PubMed  CAS  Google Scholar 

  • Conigrave AD, Lee JY, Van der Leyden L, Jiang L, Ward P, Tasevski V, Luttrell BM, Morris MB (1998) Pharmacological profile of a novel cyclic AMP-linked P2 receptor on undifferentiated HL-60 leukaemia cells. Br J Pharmacol 124: 15801585

    Google Scholar 

  • Cote S, van Sande J, Boeynaems JM (1993) Enhancement of endothelial cAMP accumulation by adenine nucleotides: role of methylxanthine-sensitive sites. Am J Physiol 264: H1498 — H1503

    PubMed  CAS  Google Scholar 

  • Crystalli G, Mills CB (1993) Identification of a receptor for ADP in blood platelets by photoaffinity labelling. Biochem J 291: 875–881

    Google Scholar 

  • Dainty IA, Pollard CE, Roberts SM, Franklin M, McKechnie KCW, Leff P (1994) Evidence for subdivisions of P2U-receptors based on suramin sensitivity. Br J Pharmacol 112: 578 P

    Google Scholar 

  • Deng GM, Matute C, Kumar CK, Fogarty DJ, Miledi R (1998) Cloning and expression of a P2Y purinoceptor from the adult bovine corpus callosum. Neurobiol of Disease 5: 259–270

    CAS  Google Scholar 

  • Dixon CJ, Woods NM, Cuthbertson KSR, Cobbold PH (1990) Evidence for 2 Ca2+ mobilizing purinoceptors on rat hepatocytes. Biochem J 269: 499–502

    PubMed  CAS  Google Scholar 

  • Dixon CJ, Cobbold PH, Green AK (1993) Adenosine 5’-[a-ß-methylene]triphosphate potentiates the oscillatory cytosolic Cat+ responses of hepatocytes to ATP, but not to ADP, Biochem J 293: 757–760

    PubMed  CAS  Google Scholar 

  • Dixon CJ, Cobbold PH, Green AK (1995) Actions of ADP, but not ATP, on cytosolic free Ca’ in single rat hepatocytes mimicked by 2-methylthioATP, Br J Pharmacol 116: 1979–1984

    PubMed  CAS  Google Scholar 

  • Dunn PM, Blakeley AGH (1988) Suramin — a reversible P2-purinoceptor antagonist in the mouse vas deferens. Br J Pharmacol 93: 243–245

    PubMed  CAS  Google Scholar 

  • Enomoto K, Furuya K, Moore RC, Yamagishi S, Oka T, Maeno T (1996) Expression cloning and signal transduction pathway of P2U receptor in mammary tumor cells. Biol Signals 5: 9–21

    PubMed  CAS  Google Scholar 

  • Erb L, Garrad R, Wang YJ, Quinn T, Turner JT, Weisman GA (1995) Site-directed mutagenesis of P2u purinoceptors — positively charged amino-acids in transmembrane helix-6 and helix-7 affect agonist potency and specificity. J Biol Chem 270: 4185–4188

    PubMed  CAS  Google Scholar 

  • Erb L, Ockerhausen J, Garrad R, Gresham H, Weisman GA, Turner JT (1997) Specific binding between the a33 integrin and an RGD domain of the P2Y2 nucleotide receptor. FASEB J 11: 3357

    Google Scholar 

  • Erlinge D, Hou M, Webb TE, Barnard EA, Moller S (1998) Phenotype changes of the vascular smooth muscle cell regulate P2 receptor expression as measured by quantitative RT-PCR. Biochem Biophys Res Commun 248: 864–870

    PubMed  CAS  Google Scholar 

  • Filippov AK, Webb TE, Barnard EA, Brown DA (1998) P2Y2 nucleotide receptors expressed heterologously in sympathetic neurons inhibit both N-type Cat+ and M-type K+ currents. J Neurosci 18: 5170–5179

    PubMed  CAS  Google Scholar 

  • Filippov AK, Webb TE, Barnard EA, Brown DA (1999) Dual coupling of heterologously-expressed rat P2Y6 nucleotide receptors to N-type Ca’ and M-type K+ currents in rat sympathetic neurones. Br J Pharmacol 126: 1009–1017

    PubMed  CAS  Google Scholar 

  • Filtz TM, Li Q, Boyer JL, Nicholas RA, Harden TK (1994) Expression of a cloned ply purinergic receptor that couples to phospholipase C. Mol Pharmacol 46: 8–14

    PubMed  CAS  Google Scholar 

  • Fischer B, Boyer JL, Hoyle CHV, Ziganshin AU, Bizzolara AL, Knight GE, Zimmet J, Burnstock G, Harden TK, Jacobsen KA (1993) Identification of potent, selective P2Y-purinoceptor agonists: structure activity relationships for 2-thioether derivatives of adenosine-5’-triphosphate. J Med Chem 36: 3937–3946

    PubMed  CAS  Google Scholar 

  • Fredericks ZL, Pitcher JA, Lefkowitz RJ (1996) Identification of the G protein-coupled receptor kinase phosphorylation sites in the human b2-adrenergic receptor. J Biol Chem 271: 13796–13803

    PubMed  CAS  Google Scholar 

  • Frelin C, Breittmayer JP, Vigne P (1993) ADP induces inositol phosphate independent intracellular Ca’ mobilisation in brain capillary endothelial cells. J Biol Chem 268: 8787–8792

    PubMed  CAS  Google Scholar 

  • Fredholm BB, Abbrachio MP, Burnstock G, Dubyak GR, Harden TK, Jacobson KA, Schwabe U, Williams M (1997) Towards a revised nomenclature for P1 and P2 receptors. Trends Pharmacol Sci 18: 79–82

    PubMed  CAS  Google Scholar 

  • Garrad RC, Otero MA, Erb L, Theiss PM, Clarke LL, Gonzalez FA, Turner JT, Weisman GA (1998) Structural basis of agonist-induced desensitisation and sequestration of the P2Y2 nucleotide receptor — consequences of truncation of the C terminus. J Biol Chem 273: 29437–29444

    PubMed  CAS  Google Scholar 

  • Gordon JL (1986) Extracellular ATP: effects, sources and fate. Biochem J 233:309–319 Guderman T, Kalkbrenner F. Schultz G (1996) Diversity and selectivity of receptor-G protein interaction. Annu Rev Pharmacol 36: 429–459

    Google Scholar 

  • Hall RA, Ostedgaard LS, Premont RT, Blitzer JT, Rahman N, Welsh Mi, Lefkowitz RJ (1998a) A C-terminal motif found in the b2-adrenergic receptor, P2Y, receptor and cystic fibrosis transmembrane conductance regulator determines binding to the Na’/H+ exchanger regulatory factor family of PDZ proteins. Proc Natl Acad Sci USA 95: 8496–8501

    Google Scholar 

  • Hall RA, Premont RT, Chow CW, Blitzer JT, Pitcher JA, Claing A, Stoffel RH, Barak LS, Shenolikar S, Weinman EJ, Grinstein S, Lefkowitz RJ (1998b) The b2adrenergic receptor interacts with the Na’/Htexchanger regulatory factor to control Na+/H’ exchange. Nature 392: 626–630

    PubMed  CAS  Google Scholar 

  • Harden TK, Lazarowski ER, Boucher RC (1997) Release, metabolism and interconversion of adenine and uridine nulceotides: implications for G protein-coupled P2 receptor activation. Trends Pharmacol Sci 18: 43–46

    PubMed  CAS  Google Scholar 

  • Harper S, Webb TE, Charlton SJ, Ng LL, Boarder MR (1998) Evidence that P2Y4 nucleotide receptors are involved in the regulation of rat aortic smooth muscle cells by UTP and ATP. Br J Pharmacol 124: 703–710

    Google Scholar 

  • Hechler B, Vigne P, Leon C, Breittmayer JP, Gachet C, Frelin C (1998) ATP derivatives are antagonists of the P2Y, receptor: similarities to the platelet ADP receptor. Mol Pharmacol 53: 727–733

    PubMed  CAS  Google Scholar 

  • Henderson DJ, Elliot DG, Smith GM, Webb TE, Dainty IA. Cloning and characterisation of a bovine P2Y receptor. Biochem Biophys Res Commun 212:648656

    Google Scholar 

  • Hoffman C, Moro S, Jacobson KA (1999) J Biol Chem (in press)

    Google Scholar 

  • Hoffmann K, Bucher P, Falquet L, Bairoch A (1999) The PROSITE database, its status in 1999. Nucleic Acids Res 27: 215–219

    Google Scholar 

  • Hollopeter G, Jantzen HM, Vincent D, Li G, England L, Ramakrishnan V, Yang RB, Nurden P, Nurden A, Julius D, Conley PB (2000) Identification of the Platelet ADP Receptor Targeted by Antithrombotic Drugs. Nature, in press

    Google Scholar 

  • Hourani SMO, Chown JA (1989) The effects of some possible inhibitors of ectonucleotidases on the breakdown and pharmacological effects of ATP in the guinea pig urinary bladder. Gen Pharmacol 20: 413–416

    PubMed  CAS  Google Scholar 

  • Hoyle CHV, Knight GE, Burnstock G (1990) Suramin antagonises responses to P2purinoceptor agonists and purinergic nerve stimulation in the guinea pig urinary bladder and taenia coli. Br J Pharmacol 99: 617–621

    PubMed  CAS  Google Scholar 

  • Huwiler A, Pfeilschifter J (1994) Stimulation by extracellular ATP and UTP of the mitogen-activated protein-kinase cascade and proliferation of rat renal mesangial cells. Br J Pharmacol 113: 1455–1463

    PubMed  CAS  Google Scholar 

  • Ishikawa S, Kawasumi M, Kusaka I, Komatsu N, Iwao N, Saito T (1994) Extracellular ATP promotes cellular growth of glomerular mesangial cells mediated via phospholipase C. Biochem Biophys Res Commun 202: 234–240

    PubMed  CAS  Google Scholar 

  • Janssens R, Communi D, Pirotton S, Samson M, Parmentier M, Boeynaems JM (1995) Cloning and tissue distribution of the human P2Y, receptor. Biochem Biophys Res Commun 221: 588–593

    Google Scholar 

  • Jantzen HM, Gousset L, Bhaskar V, Vincent D, Tai A, Reynolds EE, Conley PB (1999) Evidence for two distinct G protein-coupled ADP receptors mediating platelet activation. Thromb Haemost 81: 111–117

    PubMed  CAS  Google Scholar 

  • Jiang Q, Guo D, Lee BX, Van Rhee AM, Kim YC, Nicholas RA, Schachter JB, Harden TK, Jacobson KA (1997) A mutational analysis of residues essential for ligand recognition at the human P2Y, receptor. Mol Pharmacol 52: 499–507

    PubMed  CAS  Google Scholar 

  • Johnson JA, Friedman J, Halligan RD, Birnbaumer M, Clark RB (1991) Sensitisation of adenylyl cyclase by P2 purinergic and M5 muscarinic receptor agonists in L cells. Mol Pharmacol 39: 539–546

    Google Scholar 

  • Kennedy C, Leff P (1995) How should P2X receptors be classified pharmacologically? Trends Pharmacol. Sci. 16: 168–174

    CAS  Google Scholar 

  • Kim YC, Camaioni E, Ziganshin AU, Ji XD, King BF, Wildman SS, Rychkov A, Yoburn J, Kim H, Mohanram A, Harden TK, Boyer JL, Burnstock G (1998) Synthesis and structure-activity relationships of pyridoxal-6-arylazo-5’-phosphate and phosphonate derivatives as P2 receptor antagonists. Drug Dev Res 45: 52–66

    PubMed  CAS  Google Scholar 

  • King BF, Townsend-Nicholson A, Burnstock G (1998) Metabotropic receptors for ATP and UTP: exploring the correspondence between native and recombinant nucleotide receptors. Trends Pharmacol Sci 19: 506–514

    PubMed  CAS  Google Scholar 

  • Kreegipuu A, Blom N, Brunak S (1999) PhosphoBase, a database of phosphorylation sites: release 2.0. Nucleic Acids Res 27: 237–239

    PubMed  CAS  Google Scholar 

  • Lambrecht G, Friebe T, Grimm U, Windscheif U, Bungardt E, Hildebrandt C, Baumert HG, Spatzkumbel G, Mutschier E (1992) PPADS, a novel functionally selective antagonist of P2 purinoceptor-mediated responses. Eur J Pharmacol 217: 217–219

    PubMed  CAS  Google Scholar 

  • Leff P, Wood BE, O’Connor SE (1990) Suramin is a slowly-equilibrating but competitive antagonist at P2X receptors in the rabbit isolated ear artery. Br J Pharm 101: 645–649

    CAS  Google Scholar 

  • Leon C, Vial C, Cazenave JP, Gachet C (1996) Cloning and sequencing of a human cDNA encoding endothelial P2Y, purinoceptor. Gene 171: 295–297

    PubMed  CAS  Google Scholar 

  • Leon C, Hechler B, Vial C, Leray C, Cazenave JP, Gachet C (1997) The P2Y, receptor is an ADP receptor antagonized by ATP and expressed in platelets and megakaryoblastic cells. FEBS Letts 403: 26–30

    CAS  Google Scholar 

  • Li Q, Olesky M, Palmer RK, Harden TK, Nicholas RA (1998) Evidence that the p2y3 receptor is the avian homologue of the mammalian P2Y6 receptor. Mol Pharmacol 54: 541–546

    PubMed  CAS  Google Scholar 

  • Linder ME, Gilman AG (1992) G proteins. Sci Am 267:56–61, 64, 65

    Google Scholar 

  • Lustig KD, Shiau AK, Brake AJ, Julius D (1993) Expression cloning of an ATP receptor from mouse neuroblastoma-cells. Proc Natl Acad Sci USA 90: 51135117

    Google Scholar 

  • Maier R, Glatz A, Mosbacher J, Bilbe G (1997) Cloning of P2Y6 cDNAs and identification of a pseudogene: comparison of P2Y receptor subtype expression in bone and brain tissues. Biochem Biophys Res Commun 237: 297–302

    PubMed  CAS  Google Scholar 

  • Matsuoka I, Zhou Q, Ishimoto H, Nakinishi H (1995) Extracellular ATP stimulates adenylyl cyclases and phospholipase C through distinct purinoceptors in NG108–15 cells. Mol Pharmacol 47: 855–862

    PubMed  CAS  Google Scholar 

  • Matsuura H, Sakaguchi M, Tsuruha Y, Ehara T (1996) Activation of the muscarinic K+ channel by P2-purinoceptors via pertussis toxin-sensitive G proteins in guinea pig atrial cells. J Physiol 490: 659–671

    PubMed  CAS  Google Scholar 

  • Meyer Zu Heringdorf D, Lass H, Alemany R, Laser KT, Neumann E, Zhang CY, Schmidt M, Rauen U, Jakobs KH, vanKoppen CJ (1998) Sphingosine kinase-mediated Ca’ signalling by G-protein-coupled receptors. EMBO J 17: 2830–2837

    Google Scholar 

  • Moro S, Guo D, Camaioni E, Boyer JL, Harden TK, Jacobson KA (1998) Human P2Y1 receptor: molecular modelling and site-directed mutagenesis as tools to identify agonist and antagonist recognition sites. J Medicinal Chem 41: 1456–1466

    CAS  Google Scholar 

  • Moro S, Hoffmann C, Jacobson KA (1999) Role of the extracellular loops of G protein-coupled receptors in ligand recognition: a molecular modelling study of the human P2Y1 receptor. Biochemistry 38: 3498–3507

    PubMed  CAS  Google Scholar 

  • Mosbacher J, Maier R, Fakler B, Glatz A, Crespo J, Bilbe G (1998) P2Y receptor subtypes differentially couple to inwardly rectifying potassium channels. FEBS Lett 436: 104–110

    CAS  Google Scholar 

  • Motte S, Pirotton S, Boeynaems JM (1993) Evidence that a form of ATP uncomplexed with divalent cations is the ligand of P2Y and nucleotide/P2U receptors on aortic endothelial cells. Br J. Pharmacol. 109: 967–971

    Google Scholar 

  • Muraki K, Imaizumi Y, Watanabe M (1998) Effects of UTP on membrane current and potential in rat aortic myocytes. Eur J Pharmacol 360: 239–247

    PubMed  CAS  Google Scholar 

  • Murrin RJA, Boarder MR (1992) Neuronal nucleotide receptor linked to phospholipase-C and phospholipase-D — stimulation of PC12 cells by ATP analogs and UTP. Mol Pharmacol 41: 561–568

    Google Scholar 

  • Neary JT, Zhu Q, Bruce JM, Moore AN, Dash PK (1995) Signalling from P2 purinoceptors to MAP kinase in astrocytes involves protein kinase C. Soc Neurosci Abst 21: 581

    Google Scholar 

  • Nguyen T, Erb L, Weisman GA, Marchese A, Heng HHQ, Garrad RC, George SR, Turner JT, O’Dowd BF (1995) Cloning, expression, and chromosomal localisation of the human uridine nucleotide receptor gene. J Biol Chem 270: 3084530848

    Google Scholar 

  • Nicholas RA, Watt WC, Lazarowski ER, Li Q, Harden TK (1996) Uridine nucleotide selectivity of three phospholipase C-activating P2 receptors: identification of a UDP-selective, a UTP-selective, and an ATP- and UTP-specific receptor. Mol Pharmacol 50: 224–229

    PubMed  CAS  Google Scholar 

  • O’Connor SE, Dainty IA, Leff P (1991) Further subclassification of ATP receptors based on agonist studies. Trends Pharmacol Sci 12: 137–141

    PubMed  Google Scholar 

  • Ohyama K, Yamano Y, Sano T, Nakagomi Y, Hamakubo T, Morishima I, Inagami T (1995) Disulphide bridges in extracellular domains of angiotensin-II receptor-type I-A, Regulatory Peptides 57: 141–147

    PubMed  CAS  Google Scholar 

  • Okajima F, Tokumitsu Y, Kondo Y, Ui M (1987) P2-purinergic receptors are coupled to two signal transduction systems leading to inhibition of cAMP generation and to production of inositol trisphosphate in rat hepatocytes. J Biol Chem 262: 13483–13490

    PubMed  CAS  Google Scholar 

  • Palmer RK, Boyer JL, Schachter JB, Nicholas RA, Harden TK (1998) Agonist action of adenosine triphosphates at the human P2Y, receptor. Mol Pharmacol 54: 1118–1123

    PubMed  CAS  Google Scholar 

  • Parr CE, Sullivan DM, Paradiso AM, Lazarowski ER, Burch LH, Olsen JC, Erb L, Weisman GA, Boucher RC, Turner JT (1994) Cloning and expression of a human P2U nucleotide receptor. a target for cystic fibrosis pharmacotherapy. Proc Natl Acad Sci USA 91: 3275–3279

    PubMed  CAS  Google Scholar 

  • Patel V, Brown C, Goodwin A, Wilkie N, Boarder MR (1996) Phosphorylation and activation of p42 and p44 mitogen-activated protein kinase are required for the P2 purinoceptor stimulation of endothelial prostacyclin production. Biochem J 320: 221–226

    Google Scholar 

  • Post SR, Jacobson JP, Insel PA (1996) P2 purinergic receptor agonists enhance cAMP production in Madin-Darby canine kidney epithelial cells via an autocrine/paracrine mechanism. J Biol Chem 271, 2029–2023

    PubMed  CAS  Google Scholar 

  • Rice WR, Burton FM, Fiedeldey DT (1995) Cloning and expression of the alveolar type II cell P2U-purinergic receptor. Am J Respir Cell Mol Biol 12: 27–32

    PubMed  CAS  Google Scholar 

  • Robaye B, Boeynaems JM, Communi D (1997) Slow desensitisation of the human P2Y6 receptor. Eur J Pharmacol 329: 231–236

    PubMed  CAS  Google Scholar 

  • Roberts JA, Boarder MR (1999) Differential regulation of mitogenesis by transfected P2Y receptors. Br J Pharmacol 126: 82 P

    Google Scholar 

  • Schachter JB, Li Q, Boyer JL, Nicholas RA, Harden TK (1996) Second messenger cascade specificity and pharmacological selectivity of the human P2Yipurinoceptor. Br J Pharmacol 118: 167–173

    PubMed  CAS  Google Scholar 

  • Savarese TM, Fraser CM (1992) In vitro mutagenesis and the search for structure-function-relationships among G protein-coupled receptors. Biochem J 283: 1–19

    PubMed  CAS  Google Scholar 

  • Seye CI, Gadeau AP, Daret D, Dupuch F, Alzieu P, Capron L, Desgranges C (1997) Overexpression of the P2Y2 purinoceptor in intimal lesions of the rat aorta, Arteriosclerosis Thrombosis & Vasc Biol 17: 3602–3610

    CAS  Google Scholar 

  • Somers GR, Hammet F, Woollatt E, Richards RI, Southey MC, Venter DJ (1997) Chromosomal localisation of the human P2Y6 purinoceptor gene and phylogenetic analysis of the P2Y purinoceptor family. Genomics 44: 127–130

    PubMed  CAS  Google Scholar 

  • Sonnhammer ELL, von Heijne G, Krogh A (1998) A hidden Markov model for predicting TM helices in protein sequences. In: Glasgow EJ, Littlejohn T, Major F, Lathrop R, Sankoff D, Sensen D (eds) Proceedings of sixth international conference on intelligent systems for molecular biology. AAAI Press, Menlo Park, CA, pp 175–182

    Google Scholar 

  • Sromek SM, Harden TK (1998) Agonist-induced internalisation of the P2Y2 receptor. Mol Pharmacol 54: 485–494

    PubMed  CAS  Google Scholar 

  • Stam NJ, Klomp J, Van Der Heuvel M, Olijve W (1996) Molecular cloning and characterisation of a novel orphan receptor (P2P) expressed in human pancreas that shows high structural homology to the P2U purinoceptor. FEBS LETT. 384: 260–264

    PubMed  CAS  Google Scholar 

  • Strader CD, Fong TM, Graziano MP, Tota MR (1995) The family of G protein-coupled receptors. FASEB J 9: 745–754

    PubMed  CAS  Google Scholar 

  • Stroebaek D, Dissing CP, Olesen SP (1996) ATP activates K+ and Cl-channels via purinoceptor-mediated release of Ca’ in human coronary artery smooth muscle. Am J Physiol 271: C1463 — C1471

    CAS  Google Scholar 

  • Suh BC, Son JH, Joh TH, Kim KT (1997) Two distinct P2 purinergic receptors, P2Y and P2U, are coupled to phospholipase C in mouse pineal gland tumor cells. J Neurochem 68 1622–1632

    PubMed  CAS  Google Scholar 

  • Tobin AB, Totty NF, Sterlin AE, Nahorski SR (1997) Stimulus-dependent phosphorylation of G-protein-coupled receptors by casein kinase 1 a. J Biol Chem 272: 2084420849

    Google Scholar 

  • Tokuyama Y, Hara M, Jones EMC, Fan Z, Bell GI (1995) Cloning of rat and mouse P2Y purinoceptors. Biochem Biophys Res Commun 211: 211–218

    PubMed  CAS  Google Scholar 

  • Webb TE, Simon J, Krishek BJ, Bateson AN, Smart TG, King BF, Burnstock G, Barnard EA (1993) Cloning and functional expression of a brain G protein-coupled ATP receptor. FEBS Letters 324: 219–225

    PubMed  CAS  Google Scholar 

  • Webb TE, Henderson D, King BF, Wang S, Simon J, Bateson AN, Burnstock G, Barnard EA (1996) A novel G protein-coupled P2 purinoceptor P2Y3 activated preferentially by nucleoside diphosphates. Mol Pharmacol 50: 258–265

    PubMed  CAS  Google Scholar 

  • Webb TE, Henderson DJ, Roberts JA, Barnard EA (1998) Molecular cloning and characterisation of the rat P2Y4 receptor. J Neurochem 71: 1348–1357

    PubMed  CAS  Google Scholar 

  • Weisman GA, Erb L, Garrad RC, Theiss PM, Santiago-Perez LI, Flores RV, SantosBerrios C, Mendez Y, Gonzalez FA (1998) P2Y nucleotide receptors in the immune system: signalling by a P2Y2 receptor in U937 monocytes. Drug Dev Res 45: 222–228

    CAS  Google Scholar 

  • White PJ, Kumari R, Porter KE, London NJM, Boarder MR (1999) ATP and PDGF stimulate proliferation differentially in vascular smooth muscle cells from the human saphenous vein and internal mammary artery. Br J Pharm 127: 4 P

    Google Scholar 

  • Wilkinson GF, Purkiss JR, Boarder MR (1993) The regulation of aortic endothelial-cells by purines and pyrimidines involves coexisting P2Y-purinoceptors and nucleotide receptors linked to phospholipase-C. Br J Pharm 108: 689–693

    Google Scholar 

  • Wilkinson GF, Purkiss JR, Boarder MR (1994) Differential heterologous and homologous desensitisation of 2 receptors for ATP (P2, purinoceptors and nucleotide receptors) coexisting on endothelial cells. Mol Pharmacol 45: 731–736

    Google Scholar 

  • Windscheif U, Ralevic V, Baumert HG, Mutschler E, Lambrecht G, Burnstock G (1994) Vasoconstrictor and vasodilator responses to various agonists in the rat perfused mesenteric arterial bed — selective-inhibition by PPADS of contractions mediated via P2X-purinoceptors. Br J Pharmacol 113: 1015–1021

    PubMed  CAS  Google Scholar 

  • Yokomizo T, Izumi T, Chang K, Takuwa Y, Shimizu T (1997) A G-protein-coupled receptor for leukotriene B-4 that mediates chemotaxis. Nature 387: 620–624

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boarder, M.R., Webb, T.E. (2001). P2Y Receptors: Structure and Function. In: Abbracchio, M.P., Williams, M. (eds) Purinergic and Pyrimidinergic Signalling I. Purinergic and Pyrimidinergic Signalling, vol 151 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09604-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09604-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08742-4

  • Online ISBN: 978-3-662-09604-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics