P2X Receptors

  • I. P. Chessell
  • A. D. Michel
  • P. P. A. Humphrey
Part of the Purinergic and Pyrimidinergic Signalling book series (HEP, volume 151 / 1)


P2X receptors are a new sub-class of ligand-gated cation channels (Barnard and Humphrey 1998). Of the seven subunits cloned to date, all have a similar predicted topology, and are able to form functional cation channels when expressed as homomeric proteins. Each subunit is around 400 amino acids in length (North and Barnard 1997), except for the P2X7 subunit (Surprenant et al. 1996; Rassendren et al. 1997b) which has 595 amino acids, and all have intracellular N and C termini, two transmembrane domains and a long extra-cellular loop. Thus, the molecular architecture of the P2X receptor is quite different to that of other ligand-gated ion channels. P2X subunits, with the amiloride-sensitive FMRFamide peptide-gated sodium channels (FnaC; North 1996), comprise two distinct but related sub-classes of ligand-gated ion channels. While the overall topology of the P2X receptors (Fig. 1) is shared with various channel types, including amiloride-sensitive epithelial Na+ channels (EnaC), FnaC, the inward rectifier K+ channel, and the mechanosensitive channel of Eschericha coli, they do not share primary sequence homology. Interestingly, the sequence homology between the P2X subunits themselves is rather low; subunit identity is shown in Table 1. Not only are P2X receptors structurally distinct from other ion channels, but they also possess unique phenotypic properties, in that some members (particularly P2X7, see below) are able to undergo a transition whereby the ion channel pore dilates with prolonged agonist application (Surprenant et al. 1996; Khakh et al. 1999a; VIRGINIO et al. 1999).


Cibacron Blue Large Pore Formation Mouse P2X4 Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barnard EA, Humphrey PPA (1998) International Union of Pharmacology. XIX. The IUPHAR receptor code: a proposal for an alphanumeric classification system. Pharmacol Rev 50: 271–277PubMedGoogle Scholar
  2. Bean BP (1990) ATP-activated channels in rat and bullfrog sensory neurons: concentration dependence and kinetics. J Neurosci 10: 1–10PubMedGoogle Scholar
  3. Bianchi BR, Lynch KJ, Tourna E, Niforatos W, Burgard EC, Alexander KM, Park HS, Yu H, Metzger R, Kowaluk E, Jarvis MF, van Biesen T (1999) Pharmacological characterisation of recombinant human and rat P2X receptor subtypes. Eur J Pharmacol 376: 127–138PubMedCrossRefGoogle Scholar
  4. Bland-Ward PA, Humphrey PPA (1997) Acute nociception mediated by hindpaw P2X receptor activation in the rat. Br J Pharmacol 122: 365–371PubMedCrossRefGoogle Scholar
  5. Bleehan T, Keele CA (1977) Observations on the algogenic actions of adenosine compounds on the human blister base preparation. Pain 3: 367–377CrossRefGoogle Scholar
  6. Bo X, Simon J, Burnstock G, Barnard EA (1992) Solubilization and molecular size determination of the P2x purinoceptor from rat vas deferens. J Biol Chem 267: 17581–17587PubMedGoogle Scholar
  7. Bo X, Zhang Y, Nassar M, Burnstock G, Schoepfer R (1995) A P2X purinoceptor cDNA conferring a novel pharmacological profile. FEBS Lett 375: 129–133PubMedCrossRefGoogle Scholar
  8. Brake AJ, Wagenbach MJ, Julius D (1994) New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature 371: 519–523PubMedCrossRefGoogle Scholar
  9. Brandie U, Spielmanns P, Osteroth R, Sim J, Surprenant A, Buell G, Ruppersberg JP, Plinkert PK, Zenner H, Glowinski E (1997) Desensitization of the P2X2 receptor controlled by alternative splicing. FEBS Lett 404: 294–298CrossRefGoogle Scholar
  10. Buell G, Lewis C, Collo G, North RA, Surprenant A (1996) An antagonist-insensitive P2X receptor expressed in epithelia and brain. EMBO J 15: 55–62PubMedGoogle Scholar
  11. Buell G, Chessell IP, Michel AD, Collo G, Salazzo M, Herren S, Gretener D, Grahames CBA, Kaur R, Kosco-Vilbois M, Humphrey PPA (1998) Blockade of human P2X7 receptor function with a monoclonal antibody. Blood 92: 3521–3528PubMedGoogle Scholar
  12. Buell G, Talabot F, Gos A, Lorenz J, Lai E, Morris MA, Antonarakis SE (1999) Gene structure and chromosomal localisation of the human P2X7 receptor. Receptors Channels (in press)Google Scholar
  13. Chen C, Akopian AN, Sivilotti L, Colquhoun D, Burnstock G, Wood JN (1995) A P2X purinoceptor expressed by a subset of sensory neurons. Nature 377: 428–431PubMedCrossRefGoogle Scholar
  14. Chessell IP, Michel AD, Humphrey PPA (1997a) Functional evidence for multiple purinoceptor subtypes in the rat medial vestibular nucleus. Neuroscience 77: 783–791PubMedCrossRefGoogle Scholar
  15. Chessell IP, Michel AD, Humphrey PPA (1997b) Properties of the pore-forming P2X7 purinoceptor in mouse NTW8 microglial cells. Br J Pharmacol 121: 1429–1437PubMedCrossRefGoogle Scholar
  16. Chessell IP, Michel AD, Humphrey PPA (1998a) Effects of antagonists at the human recombinant P2X, receptor. Br J Pharmacol 124: 1314–1320PubMedCrossRefGoogle Scholar
  17. Chessell IP, Simon J, Hibell AD, Michel AD, Barnard EA, Humphrey PPA (1998b) Cloning and functional characterisation of the mouse P2X7 receptor. FEBS Lett 439: 26–30PubMedCrossRefGoogle Scholar
  18. Chessell IP, Michel AD, Humphrey PPA (1999) Determinants of human P2X, receptor large pore formation. Br J Pharmacol 126: 19 PCrossRefGoogle Scholar
  19. Cloues R, Jones S, Brown DA (1993) Zn’ potentiates ATP-activated currents in rat sympathetic neurones. Pflügers Arch 424: 152–158PubMedCrossRefGoogle Scholar
  20. Cockcroft S, Gomperts BD (1979) ATP induces nucleotide permeability in rat mast cells. Nature 279: 541–542PubMedCrossRefGoogle Scholar
  21. Collo G, North RA, Kawashima E, Merlo-Pich E, Neidhart S, Surprenant A, Buell G (1996) Cloning of P2X5 and P2X6 receptors, and the distribution and properties of an extended family of ATP-gated ion channels. J Neurosci 16: 2495–2507PubMedGoogle Scholar
  22. Cook SP, Vulchanova L, Hargreaves KM, Elde R, McCleskey EW (1997) Distinct ATP receptors on pain-sensing and stretch-sensing neurons. Nature 387: 505–508PubMedCrossRefGoogle Scholar
  23. Cook SP, Rodland KD, McCleskey EW (1998) A memory for extracellular Ca’ by speeding recovery of P2X receptors from desensitization. J Neurosci 18: 9238–9244PubMedGoogle Scholar
  24. Cook SP, McCleskey EW (1997) Desensitization, recovery and Ca’-dependent modulation of ATP-gated P2X receptors in nociceptors. Neuropharmacology 36: 1303–1308PubMedCrossRefGoogle Scholar
  25. Dhulipala PDK, Wang Y, Kotlikoff MI (1998) The human P2X4 receptor gene is alternatively spliced. Gene 207: 259–266PubMedCrossRefGoogle Scholar
  26. Dowd E, McQueen DS, Chessell IP, Humphrey PPA (1998) P2X receptor-mediated excitation of nociceptive afferents in the normal and arthritic rat knee joint. Br J Pharmacol 125: 341–346PubMedCrossRefGoogle Scholar
  27. Evans RJ, Lewis C, Virginio C, Lundstrom K, Buell G, Surprenant A, North RA (1996) Ionic permeability of, and divalent cation effect on, two ATP-gated cation channels (P2X receptors) expressed in mammalian cells. J Physiol 497.2: 413–422Google Scholar
  28. Ferrari D, Villalba M, Chiozzi P, Falzon S, Ricciardi-Castagnoli P, Di Virgilio F (1996) Mouse microglial cells express a plasma membrane pore gated by extracellular ATE J Immunol 156: 1531–1539Google Scholar
  29. Ferrari D, Chiozzi P, Falzoni S, Dal Susino M, Melchiorri L, Baricordi OR, Di Virgilio F (1997a) Extracellular ATP triggers IL-lb release by activating the purinergic P2Z receptor of human macrophages. J Immunol 159: 1451–1458PubMedGoogle Scholar
  30. Ferrari D, Chiozzi P, Falzoni S, Hanau S, Di Virgilio F (1997b) Purinergic modulation of interleukin-1-ß release from microglial cells stimulated with bacterial endotoxin. J Exp Med 185: 579–582PubMedCrossRefGoogle Scholar
  31. Funk GD. Kanjan R, Walsh C, Lipski J, Comer AM, Parkis MA, Housley GD (1997) P2 receptor excitation of rodent hypoglossal motoneuron activity in vitro and in vivo. J Neurosci 17:6325–6337Google Scholar
  32. Garcia-Guzman M, Soto F, Laube B, Stuhmer W (1996) Molecular cloning and functional expression of a novel rat heart P2X purinoceptor. FEBS Lett 388: 123–127PubMedCrossRefGoogle Scholar
  33. Garcia-Guzman M. Soto F, Gomez-Hernandez JM, Lund P, Stumer W (1997a) Characterization of recombinant human P2X4 receptor reveals pharmacological differences to the rat homologue. Mol Pharmacol 51: 109–118PubMedGoogle Scholar
  34. Garcia-Guzman M, Stuhmer W, Soto F (1997b) Molecular characterization and pharmacological properties of the human P2X4 purinoceptor. Mol Brain Res 47: 5966CrossRefGoogle Scholar
  35. Gargett CE, Wiley JS (1997) The isoquinoline derivative KN-62 a potent antagonist of the P2Z-receptor of human lymphocytes. Br J Pharmacol 120: 1483–1490PubMedCrossRefGoogle Scholar
  36. Grahames CBA, Michel AD, Chessell IP, Humphrey PPA (1999) Pharmacological characterization of ATP- and LPS-induced IL-lbeta release in human monocytes. Br J Pharmacol 127: 1915–1921PubMedCrossRefGoogle Scholar
  37. Guo A, Vulchanova L, Wang J, Li X, Elde R (1999) Immunocytochemical localization of the vanilloid receptor 1 (VR1): relationship to neuropeptides, the P2X3 purinoceptor and IB4 binding sites. Eur J Neurosci 11: 946–958PubMedCrossRefGoogle Scholar
  38. Hamilton SG, Wade A, McMahon SB (1999) The effects of inflammation and inflammatory mediators on nociceptive behaviour induced by ATP analogues in the rat. Br J Pharmacol 126: 326–332PubMedCrossRefGoogle Scholar
  39. Humphrey PPA, Buell G, Kennedy I, Khakh B, Michel AD, Surprenant A, Trezise DJ (1995) New insights on Pzx receptors. Naunyn-Schmiedebergs Arch Pharmacol 352: 585–596PubMedGoogle Scholar
  40. Humphrey PPA, Khakh BS, Kennedy C, King BF, Burnstock G (1998) P2X receptors. IUPHAR compendium of receptor characterization and classification 197–207Google Scholar
  41. Humphreys BD, Virginio C, Surprenant A, Rice J, Dubyak GR (1998) Isoquinolines as antagonists of the P2X7 nucleotide receptor: high selectivity for the human versus rat receptor homologues. Mol Pharmacol 54: 22–32PubMedGoogle Scholar
  42. Jones CA, Chessell IP, Simon J, Humphrey PPA (1999) Operational properties of mouse P2X4 receptors: a species comparison. Br J Pharmacol (in press)Google Scholar
  43. Kaiho H, Kimura J, Matsuoka I, Nakanishi H (1997) Effects of anions on ATP-activated non-selective cation current in NG108–15 cells. J Neurophysiol 77: 2717–2722.PubMedGoogle Scholar
  44. Khakh BS, Michel AD, Humphrey PPA (1994) Estimates of antagonist affinities at Pzx purinoceptors in rat vas deferens. Eur J Pharmacol 263: 301–309PubMedCrossRefGoogle Scholar
  45. Khakh BS, Bao XR, Labarca C, Lester HA (1999a) Neuronal P2X transmitter-gated cation channels change their ion selectivity in seconds. Nature Neurosci 2: 322–330PubMedCrossRefGoogle Scholar
  46. Khakh BS, Proctor WR, Dunwiddie TV, Labarca C, Lester HA (1999b) Allosteric control of gating and kinetics at P2X4 receptor channels. J Neurosci 19: 7289–7299PubMedGoogle Scholar
  47. Kidd EJ, Grahames CBA, Simon J, Michel AD, Barnard EA, Humphrey PPA (1995) Localization of P2X purinoceptor transcripts in the rat nervous system. Mol Pharmacol 48: 569–573PubMedGoogle Scholar
  48. Kidd EJ, Miller KJ, Sansum AJ, Humphrey PPA (1998) Evidence for P2X3 receptors in the developing rat brain. Neuroscience 87: 533–539PubMedCrossRefGoogle Scholar
  49. King BF, Ziganshina LE, Pintor J, Burnstock G (1996) Full sensitivity of P2X2 purinoceptor to ATP revealed by changing extracellular pH. Br J Pharmacol 117: 1371–1373PubMedCrossRefGoogle Scholar
  50. Koshimizu T,Tomic M, Koshimizu M, Stojilkovic SS (1998) Identification of amino acid residues contributing to desensitization of the P2X2 receptor channel. J Biol Chem 273: 12853–12857CrossRefGoogle Scholar
  51. Krishtal OA, Marchenko SM, Obukhov AG (1988a) Cationic channels activated by extracellular ATP in rat sensory neurons. Neuroscience 27: 995–1000PubMedCrossRefGoogle Scholar
  52. Krishtal OA, Marchenko SM, Obukhov AG, Volkova TM (1988b) Receptors for ATP in rat sensory neurones: the structure-function relationship for ligands. Br J Pharmacol 95: 1057–1062PubMedCrossRefGoogle Scholar
  53. Lê K, Paquet M, Nouel D, Babinski K, Séguéla P (1997) Primary structure and expression of a naturally truncated human P2X ATP receptor subunit from brain and immune system. FEBS Lett 418: 195–199PubMedCrossRefGoogle Scholar
  54. Lê K, Babinski K, Séguéla P (1998) Central P2X4 and P2X(, channel subunits coassemble into a novel heteromeric ATP receptor. J Neurosci 18: 7152–7159PubMedGoogle Scholar
  55. Lewis C, Neidhart S, Holy C, North RA, Buell G, Surprenant A (1995) Coexpression of P2X2 and P2X3 receptor subunits can account for ATP-gated currents in sensory neurons. Nature 377: 432–435PubMedCrossRefGoogle Scholar
  56. Li C, Peoples RW, Li Z, Weight FF (1993) Zn2- potentiates excitatory action of ATP on mammalian neurons. Proc Natl Acad Sci USA 90: 8264–8267PubMedCrossRefGoogle Scholar
  57. Li C, Peoples RW, Weight FF (1997) Mg’ inhibition of ATP-activated current in rat nodose ganglion neurons: Evidence that Mg’ decreases the agonist affinity of the receptor. J Neurophysiol 77: 3391–3395Google Scholar
  58. Li CY, Peoples RW, Weight FF (1996) Acid pH augments excitatory action of ATP on a dissociated mammalian sensory neuron. Neuroreport 7: 2151–2154PubMedCrossRefGoogle Scholar
  59. Longhurst PA, Schwegel T, Folander K, Swanson R (1996) The human P2X, receptor: molecular cloning, tissue distribution, and localization to chromosome 17. Biochim Biophys Acta 1308: 185–188PubMedCrossRefGoogle Scholar
  60. Michel AD, Lundstrom K, Buell GN, Surprenant A, Valera S, Humphrey PPA (1996a) The binding characteristics of a human bladder recombinant P2X purinoceptor, labeled with [3H]-a-/3-meATP, [35S]-ATP-gamma-S or [33P]-ATP Br J Pharmacol 117: 1254–1260Google Scholar
  61. Michel AD, Lundstrom K, Buell GN, Surprenant A, Valera S, Humphrey PPA (1996b) A comparison of the binding characteristics of recombinant P2X, and P2X2 purinoceptors. Br J Pharmacol 118: 1806–1812PubMedCrossRefGoogle Scholar
  62. Michel AD, Chessell IP, Humphrey PPA (1997a) Potent inhibition of P2Z (P2X7) receptor-mediated effects by copper, zinc and nickel ions. Br J Pharmacol 122: 13 PCrossRefGoogle Scholar
  63. Michel AD, Miller KJ, Lundstrom K, Buell GN, Humphrey PP (1997b) Radiolabeling of the rat P2X4 purinoceptor: evidence for allosteric interactions of purinoceptor antagonists and monovalent cations with P2X purinoceptors. Mol Pharmacol 51: 524–532PubMedGoogle Scholar
  64. Michel AD, Chessell IP, Humphrey PPA (1998) Inhibition of human P2X7 receptor- mediated YO-PRO-1 influx by PPADS and KN-62. Br J Pharmacol 123: 103 PGoogle Scholar
  65. Michel AD, Chessell IP, Humphrey PPA (1999) Ionic effects on human recombinant P2X7 receptor function. Naunyn-Schmiedebergs Arch Pharmacol 359: 102–109PubMedCrossRefGoogle Scholar
  66. Michel AD, Humphrey PPA (1996) High affinity P2X-purinoceptor binding sites for [35P]-adenosine 5’-O-[3-thiotriphosphate] in rat vas deferens membranes. Br J Pharmacol 117: 63–70PubMedCrossRefGoogle Scholar
  67. Miller KJ, Michel AD, Chessell IP, Humphrey PPA (1998) Cibacron blue allosterically modulates the rat P2X4 receptor. Neuropharmacology 37: 1579–1586PubMedCrossRefGoogle Scholar
  68. Nicke A, Baumert HG, Rettinger J, Eichele A, Lambrecht G, Mutschler E, Schmalzing G (1998) P2X1 and P2X3 receptors form stable trimers: a novel structural motif of ligand-gated ion channels. EMBO J 17: 3016–3028PubMedCrossRefGoogle Scholar
  69. North RA (1996) P2X purinoceptor plethora. Sem Neurosci 8: 187–194CrossRefGoogle Scholar
  70. North RA, Barnard EA (1997) Nucleotide receptors. Curr Opin Neurobiol 7: 346357Google Scholar
  71. Radford K, Virginio C, Surprenant A, North RA, Kawashima E (1997) Baculovirus expression provides direct evidence for heteromeric assembly of P2X2 and P2X3 receptors. J Neurosci 17: 6529–6533PubMedGoogle Scholar
  72. Rassendren F, Buell G, Newbolt A, North RA, Surprenant A (1997a) Identification of amino acid residues contributing to the pore of a P2X receptor. EMBO J 16: 3446–3454PubMedCrossRefGoogle Scholar
  73. Rassendren F, Buell G, Virginio C, North RA, Surprenant A (1997b) The permeabilizing ATP receptor (P2X7): Cloning and expression of a human cDNA. J Biol Chem 272: 5482–5486Google Scholar
  74. Sansum AJ, Chessell IP, Hicks GA, Trezise DJ, Humphrey PPA (1998) Evidence that P2X purinoceptors mediate the excitatory effects of a,ß-methylene-ADP in rat locus coeruleus neurones. Neuropharmacology 37: 875–885PubMedCrossRefGoogle Scholar
  75. Séguéla P, Haghighi A, Soghomonian J, Cooper E (1996) A novel P2X ATP receptor ion channel with widespread distribution in the brain. J Neurosci 16: 448–455PubMedGoogle Scholar
  76. Shen KZ, North RA (1993) Excitation of rat locus coeruleus neurons by adenosine 5’-triphosphate: ionic mechanism and receptor characterisation. J Neurosci 13: 894–899PubMedGoogle Scholar
  77. Simon J, Kidd EJ, Smith FM, Chessell IP, Murrell-Lagnado R, Humphrey PPA, Barnard EA (1997) Localization and functional expression of splice variants of the P2X2 receptor. Mol Pharmacol 52: 237–248PubMedGoogle Scholar
  78. Simon J, Chessell IP, Jones CA, Michel AD, Barnard EA, Humphrey PPA (1999) Molecular cloning and characterisation of splice variants of the mouse P2X4 receptor. Br J Pharmacol 126: 127 PGoogle Scholar
  79. Smith FM, Humphrey PPA, Murrell-Lagnado R (1999) Identification of amino acids within the P2X2 receptor C-terminus that regulate desensitization. J Physiol 520: 91–99PubMedCrossRefGoogle Scholar
  80. Soto F, Garcia-Guzman M, Gomez-Hernandez JM, Hollmann M, Karschin C, Stuhmer W (1996a) P2X4: an ATP-activated ionotropic receptor cloned from rat brain. Proc Natl Acad Sci USA 93: 3684–3686PubMedCrossRefGoogle Scholar
  81. Soto F, Garcia-Guzman M, Karschin C, Stuhmer W (1996b) Cloning and tissue distribution of a novel P2X receptor from rat brain. Biochem Biophys Res Comm 223: 456–460PubMedCrossRefGoogle Scholar
  82. Souslova V, Ravenall S, Fox M, Wells D, Wood JN, Akopian AN (1997) Structure and chromosomal mapping of the mouse P2X3 gene. Gene 195: 101–111PubMedCrossRefGoogle Scholar
  83. Steinberg TH, Newman AS, Swanson JA, Silverstein SC (1987) ATP’ permeabilizes the plasma membrane of mouse macrophages to fluorescent dyes. J Biol Chem 262: 8884–8888PubMedGoogle Scholar
  84. Stoop R, Surprenant A, North RA (1997) Different sensitivities to pH of ATP-induced currents at four cloned P2X receptors. J Neurophysiol 78: 1837–1840PubMedGoogle Scholar
  85. Surprenant A, Rassendren F, Kawashima E, North RA, Buell G (1996) The cytolytic P2Z receptor for extracellular ATP identified as a P2x receptor (P2X7). Science 272: 735–738PubMedCrossRefGoogle Scholar
  86. Torres GE, Haines WR, Egan TM, Voigt MM (1998) Co-expression of P2X, and P2X5 receptor subunits reveals a novel ATP-gated ion channel. Mol Pharmacol 54: 989–993PubMedGoogle Scholar
  87. Torres GE, Egan TM, Voigt MM (1999) Hetero-oligomeric assembly of P2X receptor subunits. Specificities exist with regard to possible partners. J Biol Chem 274: 6653–6659Google Scholar
  88. Townsend-Nicholson A, King BF, Wildman SS, Burnstock G (1 999) Molecular cloning, functional characterization and possible cooperativity between the murine P2X4 and P2X4„ receptors. Mol Brain Res 64: 246–254Google Scholar
  89. Trezise DJ, Humphrey PPA (1997) Activation of cutaneous afferent neurons by adenosine triphosphate in the neonatal rat tail-spinal cord preparation in vitro. In: Olesen J, Edvinsson L (eds) Headache pathogenesis: monoamines, neuropeptides, purines and nitric oxide. Lippincott-Raven, New York, pp 111–116Google Scholar
  90. Valera S, Hussy N, Evans RJ, Adami N, North RA, Surprenant A, Buell G (1994) A new class of ligand-gated ion channel defined by P2X receptor for extracellular ATP. Nature 371: 516–519PubMedCrossRefGoogle Scholar
  91. Valera S, Talabot F, Evans RJ, Gos A, Antonarakis SE, Morris MA, Buell GN (1995) Characterization and chromosomal localization of a human P2X receptor from the urinary bladder. Receptors Channels 3: 283–289PubMedGoogle Scholar
  92. Virginio C, Church D, North RA, Surprenant A (1997) Effects of divalent cations, protons and calmidazolium at the rat P2X, receptor. Neuropharmacology 36: 1285–1294PubMedCrossRefGoogle Scholar
  93. Virginio C, Robertson G, Surprenant A, North RA (1998) Trinitrophenyl-substituted nucleotides are potent antagonists selective for P2X1, P2X3 and heteromeric P2X2;3 receptors. Mol Pharmacol 53: 969–973PubMedGoogle Scholar
  94. Virginio C, MacKenzie A, Rassendren FA, North RA, Surprenant A (1999) Pore dilation of neuronal P2X receptor channels. Nature Neurosci 2: 315–321PubMedCrossRefGoogle Scholar
  95. Vulchanova L, Arvidsson U, Riedl MS, Wang J, Buell G, Surprenant A, North RA, Elde R (1996) Differential distribution of two ATP-gated channels ( P2X receptors) determined by immunohistochemistry. Proc Natl Acad Sci USA 93: 8063–8067Google Scholar
  96. Wang CZ, Namba N, Gonoi T, Inagaki N, Seino S (1996) Cloning and pharmacological characterization of a fourth P2X receptor subtype widely expressed in brain and peripheral tissues including various endocrine tissues. Biochem Biophys Res Commun 220: 196–202PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • I. P. Chessell
  • A. D. Michel
  • P. P. A. Humphrey

There are no affiliations available

Personalised recommendations