Skip to main content

Purinergic Neurotransmission: An Historical Background

  • Chapter

Part of the book series: Purinergic and Pyrimidinergic Signalling ((HEP,volume 151 / 1))

Abstract

It was not until the second decade of the last century that basic research findings on purines and their effects on tissue function began to appear sporadically in the literature. BASS (1914) reported on the presence of adenine (most probably as AMP) in the blood, while Thannhauser and Bommes (1914) administered the purine nucleoside adenosine subcutaneously to humans, and found it, unlike adenine, to be reasonably non-toxic. Administration of AMP had depressor activity (Fruend 1920) which led to the now seminal study of Drery and Szent-Gyorgi (1929) on the cardiovascular actions of adenosine and AMP. These included the demonstration of sinus bradycardia, heart block, reduction in atrial conduction, and at higher doses, “apprehension” and somnolence. In that same year, the purine nucleotide, ATP was discovered (Lohmann 1929; Fiske and Subbarow 1929).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbracchio MP, Burnstock G (1994) Purinoceptors: are there families of P2X and P2Y purinoceptors? Pharm Ther 64: 445–475

    Article  CAS  Google Scholar 

  • Abbracchio MP, Cattabeni F, Fredholm BB, Williams M (1992) Purinoceptor nomenclature: a status report. Drug Dev Res 28: 207–213

    Article  Google Scholar 

  • Agnati LR, Fuxe K, Ruggeri M, Merlo-Pich E, Benefenati F, Volterra V, Ungerstedt U, Zini I (1989) Effects of chronic uridine on striatal dopamine release and dopamine-related behaviours in the absence or presence of chronic treatment with haloperidol. Neurochem Inter 15: 107–113

    Article  CAS  Google Scholar 

  • Atkinson DE (1977) Cellular energy metabolism and its regulation. Academic, San Diego

    Google Scholar 

  • Bass R (1914) Über die Purinkörper des menschlichen Blutes und den Wirkungsmodus der 2-phenyl-cholincarbosäure (Atohan) Arch Exp Pathol Phramakol 76:40

    Google Scholar 

  • Belardinelli L, Shyrock JC, Song Y, Wang D, Shinivas M (1995) Ionic basis of the electrophysiological actions of adenosine on cardiomyocytes. FASEB J 9: 359–365

    CAS  Google Scholar 

  • Berne RM (1963) Cardiac nucleotides in hypoxia: possible role in the regulation of coronary blood flow. Am J Physiol 204: 317–322

    PubMed  CAS  Google Scholar 

  • Berne RM (1980) The role of adenosine in the regulation of coronary blood flow. Circ Res 47: 807–813

    Article  PubMed  CAS  Google Scholar 

  • Bianchi B, Lynch KJ, Tourna E, Niforatos W, Burgard EC, Alexander KM, Park HS, Yu H, Metzger R, Kowaluk E, Jarvis MF, van Biesen T (1999) Pharmacological characterization of recombinant human and rat P2X receptor subtypes. Eur J Pharmacol 376: 127–138

    Article  PubMed  CAS  Google Scholar 

  • Bland-Ward PA, Humphrey PPA (1997) Acute nociception mediated by hindpaw P2X receptor activation in the rat. Br J Pharmacol 122: 365–371

    Article  PubMed  CAS  Google Scholar 

  • Born GVR, Haslam RJ, Goldman N, Rowe RD (1965) Comparative effects of adenosine analogues on the inhibition of blood platelet aggregation as vasodilators in man. Nature 205: 678–680

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24: 509–581

    PubMed  CAS  Google Scholar 

  • Burnstock G (1978) A basis for distinguishing two types of purinergic receptor. In: Straub RW and Bolis L (eds) Cell Membrane Receptors for Drugs and Hormones A Multidisciplinary Approach. Raven, New York, pp 107–118

    Google Scholar 

  • Burnstock G (1999) Purinergic cotransmission. Brain Res Bull 50: 355–357

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G, Barnard EA (1996) ATP as a neurotransmitter. P2 purinoceptors: localization function and transduction mechanisms. CIBA Foundation Symp 198: 262–265

    Google Scholar 

  • Burnstock G, Kennedy C (1985) Is there a basis for distinguishing two types of P2purinoceptor? Gen Pharmacol 16: 433–440

    Article  PubMed  CAS  Google Scholar 

  • Clifford EE, Martin KA, Dalal P, Thomas R, Dubyak GR (1997) Stage specific expression of P2Y receptors, ecto-apyrase and ecto-5’-nucleotidase in myeloid leukocytes. Am. J. Physiol 273 (Cell Physiol 42): C973 — C987

    PubMed  CAS  Google Scholar 

  • Cockayne DA, Zhu Q-M, Hamilton S, Dunn PM, Zhong Y, Berson A, Kassotakis L, Bardini M, Muraski J, Novakovic S, Lachnit W G, Burnstock G, McMahon SB, Ford APDW (2000) P2X3-deficient mice display urinary bladder hyporeflexia and reduced nocifensive behavior. Drug Dev Res 50 (in press)

    Google Scholar 

  • Communi O, Boeynaems JM (1997) Receptors responsive to extracellular pyrimidine nucleotides. Trends Pharmacol Sci 18: 83–86

    Article  PubMed  CAS  Google Scholar 

  • Connolly GP, Diuley JA (1999) Uridine and its nucleotides: biological actions therapeutic potential. Trends Pharmacol Sci 20: 218–226

    Article  PubMed  CAS  Google Scholar 

  • Cooper EC, Jan LY (1999) Ion channel genes and human neurological disease: recent progress prospects and challenges. Proc Natl Acad Sci USA 96: 4759–4764

    Article  PubMed  CAS  Google Scholar 

  • Cressman VL, Lazorowski E, Homolya L, Boucher RC, Koller BH, Grubb BR (1999) Effect of loss of P2Y2 receptor gene expression on nucleotide regulation of murine epithelial Cl-transport. J Biol Chem 274: 26461–26468

    Article  PubMed  CAS  Google Scholar 

  • Daly JW (1982) Adenosine receptors: targets for future drugs. J Med Chem 25: 197–207

    Article  PubMed  CAS  Google Scholar 

  • Daly JW, Butts-Lamb P, Padgett WL (1983) Subclasses of adenosine receptors in the central nervous system: interaction with caffeine and related methylxanthines Cel Mol Neurobiol 3: 69–80

    CAS  Google Scholar 

  • Di Virgilio F, Ferrari D, Chiozzi P, Falzoni S, Sanz JM, dal Susion M, Mutini C, Hanau S, Baricordi OR (1998) Purinoceptor function in the immune system. Drug Dev Res 43: 319–329

    Google Scholar 

  • Driessen B, Reimann W, Selve N, Friderichs E, Bultmann R (1994) Antinociceptive activity of intrathecally administered P2 purinoceptor antagonists in rats. Brain Res 666: 182–188

    Article  PubMed  CAS  Google Scholar 

  • Drury AN, Szent-Gyorgi A (1929) The physiological activity of adenine compounds with special reference to their effects upon the mammalian heart. J Physiol 68, 213–237

    PubMed  CAS  Google Scholar 

  • Dubyak GR, El Moatassim C (1993) Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides. Am J Physiol 265: C577 — C606

    PubMed  CAS  Google Scholar 

  • Dunwiddie TV, Diao L (1994) Extracellular adenosine concentrations in hippocampal brain slices and the tonic inhibitory modulation of evoked excitatory responses. J Pharm Exp Ther 268: 537–545

    CAS  Google Scholar 

  • During MJ, Spencer DD (1992) Adenosine: a potential mediator of seizure arrest and postictal refractoriness. Ann Neurol 32: 618–624

    Article  PubMed  CAS  Google Scholar 

  • Edwards FA (1996) Features of P2X receptor-mediated synapses in the rat brain: why doesn’t ATP kill the postsynaptic cell. P2 purinoceptors: localization, function and transduction mechanisms. CIBA Foundation Symp 198: 278–289

    CAS  Google Scholar 

  • Edwards FA, Roberston SJ (1999) The function of A2 adenosine receptors in the mammalian brain: evidence for inhibition vs enhancement of voltage gated calcium channels an neurotransmitter release. Prog Brain Res 120: 265–273

    Article  PubMed  CAS  Google Scholar 

  • Edwards FA, Gibb AJ, Colquhoun D (1992) ATP receptor-mediated synaptic currents in the central nervous system. Nature 359: 144–147

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich YH, Kornecki E (1999) Ecto-protein kinases as mediators for the action of secreted ATP in the brain. Prog Brain Res 120: 411–426

    Article  PubMed  CAS  Google Scholar 

  • Engler R (1991) Adenosine: the signal of life? Circ 84: 951–954

    Article  CAS  Google Scholar 

  • Erion MD, Wiesner JB, Rosengren S, Ugarkar B, Boyer SH, Tsuchiya M, Nakane M, Pettersen BA, Nagahisa A (2000) Therapeutic potential of adenosine kinase inhibitors as analgesic agents. Drug Dev Res 50 (in press)

    Google Scholar 

  • Fabre JE, Nguyen M, Latour A, Keifer JA, Audoly LP, Coffman TM, Koller BH (1999) Decreased platelet aggregation, increased bleeding time and resistance to thromboembolism in P2Y,-deficient mice. Nature Med 5: 1199–1202

    Article  PubMed  CAS  Google Scholar 

  • Fiske CH, Subbarow Y (1929) Phosphorus compounds of muscle and liver. Science 70: 381–382

    Article  PubMed  CAS  Google Scholar 

  • Fredholm BB, Abbracchio MP, Burnstock G, Daly JW. Harden KT, Jacobson KA, Leff P, Williams M (1994) Nomenclature and classification of purinoceptors: a report from the IUPHAR subcommittee. Pharmacol Rev 46: 143–156

    PubMed  CAS  Google Scholar 

  • Fredholm BB, Abbracchio MP, Burnstock G, Dubyak GR, Harden KT, Jacobson KA, Schwabe U, Spedding M, Williams M (1997) Towards a revised nomenclature for PI and P2 receptors. Trends Pharm Sci 18: 79–82

    Article  PubMed  CAS  Google Scholar 

  • Fredholm BB, Bättig K, Holmén J, Nehlig A, Zvartau EE (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51: 83–133

    PubMed  CAS  Google Scholar 

  • Fruend H (1920) Über die pharmkologischen Wirkungen des defibriniertin Blutes. Arch Exp Pathol Pharmakol 86: 267–268

    Google Scholar 

  • Gavish M, Bachman I, Shoukrun R, Katz Y, Veenman L, Weisinger G, Weizman A (1999) Enigma of the peripheral benzodiazepine receptor. Pharmacological Rev 51: 629–650

    CAS  Google Scholar 

  • Geiger JD, Parkinson FE, Kowaluk E (1997) Regulators of endogenous adenosine levels as therapeutic agents. In: Jacobson KA, Jarvis MF (eds) Purinergic approaches in experimental therapeutics. Wiley-Liss, New York, pp 55–84

    Google Scholar 

  • Gerlach E, Deuticke B, Driesbach RH (1963) Der Nucleotid-Abbau in Herzmuskel bei Sauerstoffmangel and seine mögliche Bedeutung für die Coronar-Durchblutung. Naturwissenschaft 50: 228–229

    Article  CAS  Google Scholar 

  • Gingrich JA, Hen R (2000) Commentary: The broken mouse: the role of development, plasticity and environment in the interpretation of phenotypic changes in knockout mice. Curr Opin Neurobiol 10: 146–152

    Article  PubMed  CAS  Google Scholar 

  • Gordon J (1986) Extracellular ATP: effects, sources and fate. Biochem J 233: 309319

    Google Scholar 

  • Harden TK, Boyer JL, Nicholas RA (1995) P2-purinergic receptors: subtype-associated signaling responses and structure. Ann Rev Pharmacol Toxicol 35: 541–579

    Article  CAS  Google Scholar 

  • Holton P (1959) The liberation of adenosine triphosphate on antidromic stimulation of sensory nerves. J Physiol (Lond) 145: 494–504

    CAS  Google Scholar 

  • Honig LS, Rosenberg RN (2000) Apoptosis and neurologic disease. Am J Med 108: 317–330

    Article  PubMed  CAS  Google Scholar 

  • Honey RM, Ritchie WT, Thompson WAR (1930) The action of adenosine upon the human heart. Quart J Med 23: 485–490

    Article  CAS  Google Scholar 

  • Huang M, Shimizu H, Daly JW (1972) Accumulation of cyclic adenosine monophosphate in incubated slices of brain tissue. 2. Effects of depolarizing agents, membrane stabilizers, phosphodiesterase inhibitors, and adenosine analogs. J Med Chem 15: 462–466

    Google Scholar 

  • Ijzermann AP, van der Wenden NM (1997) Modulators of adenosine uptake, release, and inactivation. In: Jacobson KA, Jarvis MF (eds) Purinergic approaches in experimental therapeutics. Wiley-Liss, New York, pp 129–148

    Google Scholar 

  • Jacobson KA, van Galen PM, Williams M (1992) Perspective: Adenosine receptors: pharmacology, structure activity relationships, and therapeutic potential. J Med Chem 35: 407–422

    Article  PubMed  CAS  Google Scholar 

  • Jezer A, Oppenheimer BS, Schwartz SP (1933) The effect of adenosine on cardiac irregularities in man. Am Heart J 9: 252–258

    Article  CAS  Google Scholar 

  • Kardos J, Kovacs I, Szârics E, Kovacs R, Skuban N, Nyitrai G, Dobolyi A, Juhâsz G (1999) Uridine activates fast transmembrane Ca 2+ ion fluxes in rat brain homogenates. NeuroReport 10: 1577–1582

    CAS  Google Scholar 

  • Karlsten R, Gordh TJ (1996) An A1-selective adenosine agonist abolishes allodynia elicited by vibration and touch after intrathecal injection. Anesth Analg 80: 844847

    Google Scholar 

  • Kenakin TP (1996) The classification of seven transmembrane receptors in recombinant expression systems. Pharmacol Rev 48: 413–465

    PubMed  CAS  Google Scholar 

  • Kenny BA, Bushfield M, Parry-Smith DJ, Fogarty S, Treherne JM (1998) The application of high throughput screening to novel lead discovery. Prog Drug Res 41: 246–269

    Google Scholar 

  • King BF, Burnstock G, Boyer JL, Boeynaems JM, Weisman GA, Kennedy C, Jacobson KA, Humphries RG, Abbracchio MP, Gachet C, Miras-Portugal MT (2000) The P2Y receptors. The IUPHAR Compendium of Receptor Characterization and Classification. IUPHAR Media (in press)

    Google Scholar 

  • Khakh BS, Zhou X, Sydes J, Galligan JJ, Lester HA (2000) State-dependent cross inhibition between transmitter gated ion channels. Nature 406: 405–410

    Article  PubMed  CAS  Google Scholar 

  • Kuroda Y (1981) Regulation of neurotransmission by adenosine and cyclic AMP in mammalian central nervous system. In: Rodnight R, Bachelard HS, Stahl WL (eds) Chemisms of the brain, basic and applied neurochemistry. Churchill-Livingstone, Edinburgh, pp 108–118

    Google Scholar 

  • Kuroda Y, Mcllwain H (1994) Uptake and release of 14C adenine derivatives at beds of mammalian cortical synaptosomes in superfusion system. J Neurochem 22: 691–700

    Article  Google Scholar 

  • Latini S, Bordoni F, Pedata F, Corradetti R (1999) Extracellular adenosine concentrations during in vitro ischaemia in rat hippocampal slices. Br J Pharmacol 127: 729–739

    Article  PubMed  CAS  Google Scholar 

  • Ledent C. Vaugeois JM, Schiffmann SN, Pedrazzini T, El Yacoubi M, Vanderhaeghen JJ, Costentin J, Heath JK, Vassart G, Parmentier M (1997) Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine Ala receptor. Nature 388: 674–678

    Article  PubMed  Google Scholar 

  • Lindler F, Rigler R (1931) Über die Beeinflussung der Weite der Herzteranzgefässe durch Produkte des Zellkern-Stoffwechsels. Pflugers Archiv 226: 697–707

    Article  Google Scholar 

  • Lohmann K (1929) Über die Pyrophosphatfraktion in Muskel. Naturwissenschaften 17: 624–625

    CAS  Google Scholar 

  • Londos C, Wolff J (1977) Two distinct adenosine-sensitive sites on adenylate cyclase. Proc Natl Acad Sci USA 74: 5482–5486

    Article  PubMed  CAS  Google Scholar 

  • Londos C, Cooper DMF, Woolf J (1980) Subclasses of external adenosine receptors. Proc Natl Acad Sci USA 77: 2551–2554

    Article  PubMed  CAS  Google Scholar 

  • Michel AD, Miller KJ, Lundtstrom K, Buell GN, Humphrey PPA (1997) Radiolabeling of the rat P2X4 purinoceptor: evidence for allosteric interactions of purinoceptor antagonists and monovalent cations with P2X purinoceptors. Mol Pharmacol 51: 524–532

    PubMed  CAS  Google Scholar 

  • Milligan G (2000) Receptors as kissing cousins. Science 288: 65–67

    Article  PubMed  CAS  Google Scholar 

  • Mulryan K, Gitterman DP, Lewis CH, Vial C, Leckie BJ, Cobb AL, Brown JE, Conley EC, Buell G, Pritchard CA, Evans RJ (2000) Reduced vas deferens contraction and male infertility in mice lacking P2X, receptors. Nature 403: 86–89

    Article  PubMed  CAS  Google Scholar 

  • Newby AC (1984) Adenosine and the concept of a retaliatory metabolite. Trends Biochem Sci 9: 42–44

    Article  CAS  Google Scholar 

  • Nicke A, Baumert HG, Rettinger J, Eichele A, Lambrecht G, Mutschler E, Schmaizing F (1998) P2X, and P2X3 receptors form stable trimers: a novel structural motif of ligand-gate ion channels. EMBO J 17: 3016–3028

    Article  PubMed  CAS  Google Scholar 

  • Noji H (1998) The rotary enzyme of the cell: the rotation of Fl-ATPase. Science 282: 1844–1845

    Article  PubMed  CAS  Google Scholar 

  • North RA, Barnard E A (1997) Nucleotide receptors. Curr Opin Neurobiol 7: 346–357

    Article  PubMed  CAS  Google Scholar 

  • North RA, Surprenant A (2000) Pharmacology of cloned P2X receptors. Ann Rev Pharmacol Toxicol 40: 563–580

    Article  CAS  Google Scholar 

  • Olah ME, Stiles GL (1995) Adenosine receptor subtypes: characterization and therapeutic regulation. Ann Rev Pharmacol Toxicol 35: 581–606

    Article  CAS  Google Scholar 

  • Olsson RA, Patterson RE (1976) Adenosine as a physiological regulator of coronary blood flow. Prog Mol Subcell Biol 4: 227–248

    Article  CAS  Google Scholar 

  • Paterson ARP, Jakobs ES, Ng CYC, Odegard RD, Adjei AA (1987) Nucleoside transport inhibition in vitro and in vivo. In: Gerlach, E, Becker, B (eds) Topics and perspectives in adenosine research. Springer, Berlin Heidelberg New York, pp 89–101

    Chapter  Google Scholar 

  • Pazzagli M, Corsi C, Fratti S, Pedata F, Pepeu G (1995) Regulation of extracellular adenosine levels in the striatum of aging rats. Brain Res 684: 103–106

    Article  PubMed  CAS  Google Scholar 

  • Phillis JW (1989) Adenosine in the control of the cerebral circulation Cerebrovasc Brain Metab Rev 1: 26–54

    CAS  Google Scholar 

  • Pintor J, Miras-Portugal MT (2000) Receptors for diadenosine polyphosphates P2D, P2Y ApnA, P4 and dinucleotide receptors: are there too many? Trends Pharmacol Sci 21: 135

    Article  PubMed  CAS  Google Scholar 

  • Pull IP, Mcllwain H (1977) Adenine mononucleotides and their metabolites liberated from and applied to isolated tissues of the mammalian brain. Neurochem Res 2: 203–216

    Article  CAS  Google Scholar 

  • Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 60: 413–492

    Google Scholar 

  • Robertson SJ, Edwards FA (1998) ATP and glutamate are released from separate neurones in the rat medial habenula nucleus: frequency dependence and adenosine-mediated inhibition of release. J Physiol (Lond) 508: 691–701

    Article  CAS  Google Scholar 

  • Rudolphi KA, Schubert P, Parkinson FE, Fredholm BB (1992) Neuroprotective role of adenosine in cerebral ischaemia. Trends Pharmacol Sci 13: 439–445

    Article  PubMed  CAS  Google Scholar 

  • Sattin A, Rall TW (1970) The effect of adenosine and adenine nucleotides on the cyclic adenosine 3’,5’-monophosphate content of guinea pig cerebral cortex slices. Mol Pharmacol 6: 13–23

    PubMed  CAS  Google Scholar 

  • Schacter JB, Harden TK (1997) An examination of deoxyadenosine 5’(alpha-thio) triphosphate as a ligand to define P2Y receptors and its selectivity as a low potency partial agonist of the P2Y, receptor. Br J Pharmacol 121: 228–344

    Google Scholar 

  • Searl TJ, Redman RS, Silinsky EM (1998) Mutual occlusion of P2X ATP receptors and nicotinic receptors on sympathetic neurons of the guinea-pig. J Physiol (Lond) 510: 783–791

    Article  CAS  Google Scholar 

  • Sikora A, Liu J, Brosnan C, Buell G, Chessel I, Bloom BR (1999) Cutting edge: purinergic signaling regulates radical-mediated bacterial killing mechanism in macrophages through a P2X7-independent mechanism. J Immunol 163: 558–561

    PubMed  CAS  Google Scholar 

  • Simon DK, Johns DR (1999) Mitochondrial disorders: clinical and genetic features. Ann Rev Med 50: 111–127

    Article  PubMed  CAS  Google Scholar 

  • Sylven C, Jonzon B, Fredholm BB, Kaijser L (1988) Adenosine injection into the brachial artery produces ischemia like pain or discomfort in the forearm. Cardiovasc Res 22: 674–678

    Article  PubMed  CAS  Google Scholar 

  • Sperlagh B, Vizi ES, (1996) Neuronal synthesis, storage and release of ATP. Seminar Neurosci 8: 175–186

    Article  CAS  Google Scholar 

  • Thannhauser SJ, Bommes A (1914) Experimentelle Studien über den Nucleinstoffweschel. 2. Mittelung. Stoffwechselversuche mit Adenosin and Guanosin. HoppeSeyler’s Z Physiol Chem 91: 336–344

    Google Scholar 

  • Traverso V, Florio T, Virgilio A, Caciagli F, Rathbone MP (2000) Are neuroprotective effects of guanosine mediated by guanosine receptors? Soc Neurosci Abstr 26, 148. 15

    Google Scholar 

  • Triggle DJ (1998) Chemical diversity, Current Protocols Pharmacol. Wiley, New York, pp 901–918

    Google Scholar 

  • Tordorov LD, Mihaylova-Todorova S, Westfall TD, Sneddon P, Kennedy C, Bjur RA, Westfall DP (1997) Neuronal release of soluble nucleotidases and their role in neurotransmitter inactivation. Nature 387: 76–79

    Article  Google Scholar 

  • Van Calker D, Muller M, Hamprecht, B (1979) Adenosine regulates via two different receptors, the accumulation of cyclic AMP in cultured brain cells. J Neurochem 33: 999–1005

    Article  PubMed  Google Scholar 

  • Vranai K, Merighi S, Gessi S, Klotz K-N, Leung E, Baraldi PG, Cacciari B, Romagnoli R, Spalluto G, Borea, PA (2000) [3H]MRE 3008F20: a novel antagonist radioligand for the pharmacological and biochemical characterization of human A3 adenosine receptors. Mol Pharmacol 57: 968–975

    Google Scholar 

  • Wiesner JB, Ugarkar BG, Castellino AJ, Barankiewicz J, Dumas DP. Gruber HE, Foster AC, Erion MD (1999) Adenosine kinase inhibitors as a novel approach to anti-convulsant therapy J Pharmacol Exp Ther 289: 1669–1677

    CAS  Google Scholar 

  • Williams M (1989) Adenosine: the prototypic neuromodulator. Neurochem Int 14: 249–264

    Article  PubMed  CAS  Google Scholar 

  • Williams M, Jarvis MF (2000) Purinergic and pyrimidinergic receptors as potential drug targets. Biochem Pharmacol, 59: 1173–1185

    Article  PubMed  CAS  Google Scholar 

  • Yu H, Bianchi B, Metzger R, Lynch KJ, Kowaluk EA, Jarvis MF, van Biesen T (1999) Lack of specificity of [35S]-ATPyS and [35S]-ADPßS as radioligands for inotropic and metabotropic P2 receptor binding. Drug Dev Res 48: 84–93

    Article  CAS  Google Scholar 

  • Zhang G, Franklin PH, Murray TF (1993) Manipulation of endogenous adenosine in the rat piriform cortex modulates seizure susceptibility. J Pharmacol Exp Ther 264: 1415–1424

    PubMed  CAS  Google Scholar 

  • Zimmerman H, Braun N (1999) Ecto-nucleotidases — molecular structures, catalytic properties, and functional roles in the nervous system. Prog Brain Res 120: 371–385

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Abbracchio, M.P., Williams, M. (2001). Purinergic Neurotransmission: An Historical Background. In: Abbracchio, M.P., Williams, M. (eds) Purinergic and Pyrimidinergic Signalling I. Purinergic and Pyrimidinergic Signalling, vol 151 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09604-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09604-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08742-4

  • Online ISBN: 978-3-662-09604-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics