Advertisement

Physiologie von Nozizeption und Schmerz

  • M. Zimmermann

Zusammenfassung

Der Schmerz hat viele Bezüge zur Lebens- und Geisteswelt des Menschen, entsprechend vielfältig sind seine Synonyme. So hat er einen hohen Stellenwert in allen Religionen (Strafe, Sünde, Erlösung), in den Sozialsystemen (Strafe, Erziehung, Kommunikation, Initiationsriten), in der Philosophie (Gegenpol der Lust), in der Dicht- und Bildkunst (Trauer, Abschied, Verzweiflung). Aus biologischer Sicht ist er ein Sinnessystem mit Überlebenswert, das in der Evolution der Tiere frühzeitig und universell angelegt wurde. In der Medizin ist der Schmerz ein Symptom vieler Krankheiten, jedoch auch Indikator und Ausdruck für gestörte Befindlichkeit und Leidenszustände, als chronischer Schmerz kann er zu einer eigenständigen Krankheit werden. Wissenschaftlich ist der Schmerz Gegenstand von Biologie, Medizin, Psychologie und Sozialwissenschaften. Entsprechend setzt sich auch in der Heilkunde zunehmend eine biopsychosoziale Perspektive durch. Dieser Beitrag befasst sich mit den neurobiologischen Mechanismen des Schmerzes, unter Bemühung einer interdisziplinären Sichtweise.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Azkue JJ, Zimmermann M, Hsieh TF, Herdegen T (1998) Peripheral nerve insult induces NMDA receptor-mediated, delayed degeneration in spinal neurons. Eur J Neurosci 10:2204–2206PubMedCrossRefGoogle Scholar
  2. Beck PW, Handwerker HO, Zimmermann M (1974) Nervous outflow from the cat’s foot during noxious radiant heat stimulations. Brain Res 67:373–386PubMedCrossRefGoogle Scholar
  3. Blumberg H (1988) Zur Entstehung und Therapie des Schmerzsyndroms bei der sympathischen Reflexdystrophie — Klinisches Bild, experimentelle Untersuchungen und neue pathophysiologische Vorstellungen. Schmerz 2:125–143PubMedCrossRefGoogle Scholar
  4. Borsook D (ed) (1997) Molecular Neurobiology of Pain. IASP Press, Seattle, p 369Google Scholar
  5. Cajal S, Ramon Y (1959) Degeneration and regeneration in the nervous system (translation of original publication from 1928). Hafner, New YorkGoogle Scholar
  6. Carstens E, Klumpp D, Zimmermann M (1980) Differencial inhibitory effects of medial and lateral midbrain stimulation on spinal neuronal discharges to noxious skin heating in the cat. J Neurophysiol 43:322–342Google Scholar
  7. Coderre TJ, Katz J, Vaccarino AL, Melzack R (1993) Contribution of central plasticity to pathological pain: review of clinical and experimental evidence. Pain 52:259–285PubMedCrossRefGoogle Scholar
  8. Conradi E (Hrsg) (1990) Schmerz und Physiotherapie. Verlag Gesundheit, BerlinGoogle Scholar
  9. Dalessio DJ (ed) (1980) Wolff’s Headache and other Head Pain. Oxford University Press, New York OxfordGoogle Scholar
  10. Ensink FBM, Soyka D (Hrsg) (1994) Migräne — Aktuelle Aspekte eines altbekannten Leidens. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  11. Fields HL, Basbaum AL (1994) Central nervous system mechanisms of pain modulation. In: Wall PD, Melzack R (eds) Textbook of Pain, 3rd ed. Curchill Livingstone, Edinburgh, pp 243–257Google Scholar
  12. Flor H (1991) Psychobiologie des Schmerzes. Huber, BernGoogle Scholar
  13. Flor H, Birbaumer N, Backonja MM, Bromm B (1994) Acquisition of chronic pain: psychophysiological mechanisms. Am Pain Soc J 3:119–197Google Scholar
  14. Flor H, Elbert T, Knecht S et al. (1995) Phantom-pain as a perceptual correlate of cortical reorganization following arm amputation. Nature 375:482–484PubMedCrossRefGoogle Scholar
  15. Foerster O (1927) Die Leitungsbahnen des Schmerzgefühls und die chirurgische Behandlung der Schmerzzustände. Urban & Schwarzenberg, Berlin WienGoogle Scholar
  16. Gebhardt GF (1996) Visceral polymodal nociceptors. In: Kumazawa T, Kruger L, Mizumura K (eds) The Polymodal Receptor: A Gateway to Pathological Pain. Progress in Brain Research. Elsevier, Amsterdam, pp 101–114CrossRefGoogle Scholar
  17. Gebhardt GF, Sandkühler J, Thalhammer JG, Zimmermann M (1984) Inhibition in spinal cord of nociceptive information by electrical stimulation and morphine microinjection at identical sites in midbrain of the cat. J Neurophysiol 51:75–89Google Scholar
  18. Gillardon F, Beck H, Uhlmann E et al. (1994) Inhibition of c-Fos protein expression in rat spinal cord by antisense oligodeoxynucleotide superfusion. Eur J Neurosci 6:880–884PubMedCrossRefGoogle Scholar
  19. Goadsby PJ, Edvinsson L (1993) The trigeminovascular system and migraine: studies characterizing cerebrovascular and neuropeptide changes seen in humans and cats. Ann Neurol 33:48–56PubMedCrossRefGoogle Scholar
  20. Gosztonyi G (ed) (2001) The Mechanisms of Neuronal Damage in Virus Infections of the Nervous System. Current Topics in Microbiology and Immunology, Vol. 253. Springer, BerlinGoogle Scholar
  21. Handwerker HO (1999) Einführung in die Pathophysiologie des Schmerzes. Springer, Heidelberg, p 173CrossRefGoogle Scholar
  22. Handwerker HO, Zimmermann M (1976) Schmerz und vegetatives Nervensystem. In: Sturm A, Birkmayer W (Hrsg) Klinische Pathologie des vegetativen Nervensystems. Fischer, Stuttgart, S 468Google Scholar
  23. Hansen K, Schliack H (1962) Segmentale Innervation. Thieme, StuttgartGoogle Scholar
  24. Hassler R (1960) Die zentralen Systeme des Schmerzes. Acta Neurochir 8:353–423PubMedCrossRefGoogle Scholar
  25. Herdegen T, Tolle T, Bravo R, Zieglgänsberger W, Zimmermann M (1991) Sequential expression of JUN B, JUN D and FOS B proteins in rat spinal neurons: cascade of transcriptional operations during nociception. Neurosci Lett 129: 221–224PubMedCrossRefGoogle Scholar
  26. Herdegen T, Zimmermann M (1994) Expression of c-Jun and JunD transcription factors represent specific changes in neuronal gene expression following axotomy. In: Seil FJ (ed) Neural Regeneration. Progress in Brain Research, Vol. 103. Elsevier, Amsterdam New York Oxford, pp 153–171CrossRefGoogle Scholar
  27. Iggo A (ed) (1973) Somatosensory system. Handbook of sensory physiology, Vol. II. Springer, Berlin Heidelberg New YorkGoogle Scholar
  28. Iggo A, llyinski OB (eds) (1976) Somatosensory and visceral receptor mechanisms. Progress in Brain Research, Vol 43. Elsevier, AmsterdamGoogle Scholar
  29. Jänig W (1982) Viszeraler Schmerz — Sympathisches Nerven-system und Schmerz. Diagnostik 15:1123Google Scholar
  30. Jänig W, Schmidt RF (eds) (1992) Reflex Sympathetic Dystrophy: Pathophysiological Mechanisms and Clinical Implications. VCH Verlagsgesellschaft, WeinheimGoogle Scholar
  31. Jänig W, Stanton-Hicks M (eds) (1996) Reflex Sympathetic Dystrophy: A Reappraisal. IASP Press, Seattle, p 249Google Scholar
  32. Ji R-R, Woolf CJ (2001) Neuronal plasticity and signal transduction in nociceptive neurons: implications for the initiation and maintenance of pathological pain. Neurobiology of Disease 8:1–10PubMedCrossRefGoogle Scholar
  33. Keeser W, Pöppel E, Mitterhusen P (Hrsg) (1982) Schmerz. Urban &; Schwarzenberg, München Wien BaltimoreGoogle Scholar
  34. Mao J, Price CD, Mayer DJ (1995) Experimental mononeuropathy reduces the antinociceptive effects of morphine: implications for common intracellular mechanisms involved in morphine tolerance and neuropathic pain. Pain 61:353–364PubMedCrossRefGoogle Scholar
  35. Melzack R, Wall PD (1965) Pain mechanisms: A new theory. Science 150:971–978PubMedCrossRefGoogle Scholar
  36. Mense S (1981) Sensitization of group IV muscle receptors to bradykinin by 5-hydroxytryptamine and prostaglandin E2. Brain Res 225:95PubMedCrossRefGoogle Scholar
  37. Mense S (1993) Nociception from skeletal muscle in relation to clinical muscle pain. Pain 54:241 – 289PubMedCrossRefGoogle Scholar
  38. Messing RB, Lytle LD (1977) Serotonin-containing neurons: their possible role in pain and analgesia. Pain 4:1–21PubMedCrossRefGoogle Scholar
  39. Morgan JI, Curran T (1989) Stimulus-transcription coupling in neurons: role of cellular immediate-early genes. Trends Neurosci 12:459–462PubMedCrossRefGoogle Scholar
  40. Olesen J, Edvinsson L (eds) (1997) Headache pathogenesis: Monoamines, neuropeptides, purines and nitric oxide. Lippincott-Raven, PhiladelphiaGoogle Scholar
  41. Olesen J, Saxena PR (eds) (1992) 5-Hydroxytryptamine mechanisms in primary headaches. Raven Press, New YorkGoogle Scholar
  42. Sandkühler J, Bromm B, Gebhart GF (eds) (2000) Progress in Brain Research, Vol. 129. Elsevier Science, AmsterdamGoogle Scholar
  43. Sandkühler J, Liu X-G (1998) Induction of long-term potentiation at spinal synapses by noxious stimulation or nerve injury. Eur J Neurosci 10:2476–2480.PubMedCrossRefGoogle Scholar
  44. Schmidt RF, Schaible H-G, Messlinger K, Heppelmann B, Hanesch U, Pawlak M (1994) Silent and active nociceptors: structure, functions, and clinical implications. In: Gebhart GF, Hammond DL, Jensen DS (eds) Proceedings of the 7th World Congress on Pain. Progress in Pain Research and Management, Vol 2. IASP Press, Seattle, pp 213—250Google Scholar
  45. Schmidt RF, Struppler A (1982) Der Schmerz. Piper, MünchenGoogle Scholar
  46. Schmidt RF, Thews G, Lang F (Hrsg) 2000 Physiologie des Menschen, 28. Aufl. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  47. Sommer C, Schmidt C, George A (1998) Hyperalgesia in experimental neuropathy is dependent on the TNF receptor 1. Exp Neurol 151:138–142PubMedCrossRefGoogle Scholar
  48. Stanton-Hicks M (2000) Complex regional pain syndrome (type I, RSD; type II, causalgia): controversies. Clin J Pain 16 (Suppl): S33–40, ReviewPubMedCrossRefGoogle Scholar
  49. Tricklebank MD, Curzon G (eds) (1984) Stress Induced Analgesia. Wiley, New YorkGoogle Scholar
  50. Wall PD, Devor M, Inbal R et al. (1979) Autonomy following peripheral nerve lesions: experimental anaesthesia dolorosa. Pain 7:103–113PubMedCrossRefGoogle Scholar
  51. Wall PD, Melzack R (eds) (1994a) Textbook of Pain, 3rd edn. Churchill Livingstone, London Edinburgh Melbourne New YorkGoogle Scholar
  52. Willis WD (1982) Control of nociceptive transmission in the spinal cord. In: Autrum H, Ottoson G, Perl ER, Schmidt RF (eds) Progress in Sensory Physiology, Vol 3. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  53. Yaksh TL, Rudy TA (1978) Narcotic analgesics: CNS sites and mechanisms of action as revealed by intracerebral injection techniques. Pain 4:299–359PubMedCrossRefGoogle Scholar
  54. Zimmermann M (1979) Peripheral and central nervous mechanisms of nociception, pain, and pain therapy: facts and hypotheses. In: Bonica JJ, Liebeskind JC, Albe-Fessard DG (eds) Advances in Pain Research and Therapy, Vol 3. Raven, New York, pp 3–32Google Scholar
  55. Zimmermann M (ed) (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16: 109–110PubMedCrossRefGoogle Scholar
  56. Zimmermann M (1991a) Zur Frage der Schmerzempfindlichkeit des Fetus: Neuro-, psycho- und verhaltensphysiologische Aspekte. Schmerz 5:122–130PubMedCrossRefGoogle Scholar
  57. Zimmermann M (1991b) Central nervous mechanisms modulating pain-related information: do they become deficient after lesions of the peripheral or central nervous system? In: Casey KL (ed) Pain and Central Nervous System Disease: the Central Pain Syndromes. Raven Press, New York, pp 183–199Google Scholar
  58. Zimmermann M (2000) Das somatoviszerale sensorische System. In: Schmidt RF, Thews G, Lang F (Hrsg) Physiologie des Menschen, 28. Aufl. Springer, Berlin Heidelberg New York Tokio, pp 216–235CrossRefGoogle Scholar
  59. Zimmermann M (2001) Pathobiology of neuropathic pain. Eur J Pharmacol 429:23–37PubMedCrossRefGoogle Scholar
  60. Zimmermann M, Herdegen T (1994) Control of gene transcription by Jun and Fos proteins in the nervous System — Beneficial or harmful molecular mechanisms of neuronal response to noxious stimulation? Am Pain Soc J 3:33–48Google Scholar
  61. Zimmermann M, Herdegen T (1996) Plasticity of the nervous system at the systemic, cellular and molecular levels: A mechanism of chronic pain and hyperalgesia. In: Carli G, Zimmermann M (eds) Towards the neurobiology of chronic pain. Progress in brain research, vol 110. Elsevier, Amsterdam, pp 233–259CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • M. Zimmermann

There are no affiliations available

Personalised recommendations