Skip to main content

CVD-Verfahren

  • Chapter
Prozeßtechnologie

Part of the book series: Mikroelektronik ((MIKROELEKTRONIK))

  • 324 Accesses

Zusammenfassung

Der Begriff CVD steht abkürzend für Chemical Vapor Deposition und bezeichnet die Abscheidung eines festen amorphen, poly- oder monokristallinen Films auf einem Substrat aus der Gasphase. Die Gase, die den oder die Reaktanten enthalten werden hierbei in einen Reaktor geleitet, dort durch Energiezufuhr dissoziiert und die Radikale einer Reaktion zugeführt. Die Energiezufuhr kann entweder thermisch, also durch Wärme, durch Anregung der Reaktanten in einem Plasma (PECVD: Plasma Enhanced CVD) oder über Photonen erfolgen (photonenunterstützte Prozesse, Laser-CVD).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Sherman, A.: Chemical Vapor Deposition for Microelectronics. Park Ridge, New Jersey: Noyes Publications 1987

    Google Scholar 

  2. Frey, H.; Kienel, G. (Hrsg.): Dünnschichttechnologie. Düsseldorf: VDI-Verlag

    Google Scholar 

  3. Gerthsen, C.: Physik. Berlin: Springer 1963

    Google Scholar 

  4. Huppertz, H.: Modellierung einer Niederdruckabscheidung von S102. Dissertation, Fakultät der RWTH Aachen, 1980

    Google Scholar 

  5. Kamins, T.: Polycristalline Silicon for Integrated Cicuit Applications. Kluwer Academic Publishers 1988

    Google Scholar 

  6. Bird, R.B.; Stewart, W.E.; Lightfoot, E.N.: Transport Phenomena. John Wiley Sons 1960

    Google Scholar 

  7. Wiesemann, K.: Einführung in die Gaselektronik. Stuttgart: B.G. Teubner

    Google Scholar 

  8. Kumagi, H.Y.: Design of Plasma Etching and Deposition Systems. J. Vac. Sci.

    Google Scholar 

  9. Technol. A 4 (3) (1986) 1800–1804

    Google Scholar 

  10. Seegebrecht, P.; Sigmund, H.; Haberger, K.: Entwicklung und Einsatz-

    Google Scholar 

  11. möglichkeiten von Produktionssystemen für die modulare Prozeßtechnik unter Berücksichtigung photonenunterstützter Prozesse. GME-Fachbericht 5 “Halbleiterfertigung”, VDE-Verlag 1989, 125–136

    Google Scholar 

  12. Singer, P.H.: Use Dry Pumps for Aluminum Etch and Other Challenging Processes. Semiconductor International (Oct. 1989) 70–73

    Google Scholar 

  13. Wutz, M.; Adam, H.; Walcher, W.: Theorie und Praxis der Vakuumtechnik, 3. Aufl. Braunschweig, Wiesbaden: Vieweg 1986

    Google Scholar 

  14. Rosler, R.S.: Low Pressure CVD Production Processes for Poly, Nitride and Oxide. Solid State Technology (April 1977) 63–70

    Google Scholar 

  15. Lucovsky, G.; Tsu, D.V.: Plasma Enhanced Chemical Vapor Deposition: Differences between Direct and Remote Plasma Excitation. J. Vac. Sci. Technol. A 5 (4) (1987) 2231–2238

    Article  Google Scholar 

  16. Verordnung über gefährliche Stoffe vom 26.8.86 (BGBl. I, S. 1470 ), 1. Aufl. Köln, Berlin, Bonn, München: Carl Heymanns Verlag 1986

    Google Scholar 

  17. Kühn, Birett: Merkblätter Gefährliche Arbeitsstoffe. Ecomed, jährlich neu [7.16] Schumacher, Carlsbad; Firmenschriften: Product Data Sheets, Material Safety Data Sheets

    Google Scholar 

  18. Sze, S.M.(Ed.); Adams, A.C.: Dielectric and Polysilicon film deposition. In: VLSI Technology. Singapore: McGraw-Hill 1983

    Google Scholar 

  19. Harbeke, G. et al.: LPCVD Polycristalline Silicon: Growth and Physical Properties of In-situ Phosphorus Doped and Undoped Films. RCA Review 44 (1983) 287–312

    Google Scholar 

  20. Kern, W.; Rosier, R.S.: Advances in Deposition Processes for Passivation Films. J. Vac. Sci. Technol. 14 (1977). 1082–1099

    Article  Google Scholar 

  21. Yeckel, A.; Middleman, S.: Stategies for the Control of Deposition Uniformity in CVD. J. Electrochem. Soc. 137 (1990) 207–212

    Article  Google Scholar 

  22. Chin, B.L.; van de Ven, E.P.: Plasma TEOS Process for Interlayer Dielectric Applications. Solid State Technology (April 1988) 119–122

    Google Scholar 

  23. Pan, P. et al.: The Composition and Properties of PECVD Silicon Oxide Films J. Electrochem. Soc. 132 (1985) 2012–2019

    Article  Google Scholar 

  24. van de Ven, E.P.G.T.: Plasma Deposition of Silicon Dioxide and Silicon Nitride Films. Solid State Technology (April 1981) 167–171

    Google Scholar 

  25. Levin, R.M.; Evans-Lutterodt, K.: The Stepcoverage of Undoped and

    Google Scholar 

  26. Phosphorus-doped SiO2 Glass Films. J. Vac. Sci. Technol. B 1 (1983) 54–61

    Google Scholar 

  27. Adams, A.C.; Capio, C.D.: The Deposition of Silicon Dioxide Films at Reduced Pressure. J. Electrochem. Soc. 126 (1979) 1042–1046

    Article  Google Scholar 

  28. Visser, C.G.: Supply Techniques for Liquid Starting Materials with a Low Vapour Pressure into CVD Reactors. Report 18/89EN, Philips CFT, Eindhoven 1989

    Google Scholar 

  29. Tong, J.E. et al.: Process and Film Characterization of PECVD Borophosphosilicate Films for VLSI Applications. Solid State Technology (Jan. 1984) 161–170

    Google Scholar 

  30. Wong, J.: A Review of Infrared Spectroscopic Studies of Vapour Deposited Dielectric Glass Films on Silicon. J. El. Mat. 5 (1976) 113

    Article  Google Scholar 

  31. Becker, F.S. et al.: Process and Film Characterization of Low Pressure Tetraethylorthosilicate-borophosphosilicate Glass. J. Vac. Sci. Technol. B 4 (1986) 732–744

    Article  Google Scholar 

  32. Hurley, K.H.; Bartholomew, L.D.: BPSG Films Deposited by APCVD. Semiconductor International (Oct. 1987) 91–95

    Google Scholar 

  33. Law, K. et al.: Plasma-enhanced Deposition of Borophosphosilicate Glass using TEOS and Silane Sources. Solid State Technology (April 1989) 60–62

    Google Scholar 

  34. Shioya, Y.; Maeda, M.: Comparison of Phosphosilicate Glass Films Deposited

    Google Scholar 

  35. by Three Different Chemical Vapour Deposition Methods. J. Electrochem. Soc. 133 (1986) 1943–1950

    Google Scholar 

  36. Kern, W.; Schnable, G.L.: Chemically Vapor-deposited Borophosphosilicate

    Google Scholar 

  37. Glasses for Silicon Device Applications. RCA Review 43 (1982) 423–457

    Google Scholar 

  38. Levin, R.M.; Adams, A.C.: Low Pressure Deposition of Phosphosilicate Glass

    Google Scholar 

  39. Films. J. Electrochem. Soc. 129 (1982) 1588–1592

    Google Scholar 

  40. Williams, D.S.; Dein, E.A.: LPCVD of Borophosphosilicate Glass from Organic Reactants. J. Electrochem. Soc. 134 (1987) 657–664

    Article  Google Scholar 

  41. Becker, F.S.; Röhl, S.: Low Pressure Deposition of Doped S102 by Pyrolisis of

    Google Scholar 

  42. Tetraethylorthosilicate (TEOS). J. Electrochem. Soc. 134 (1987) 2923–2931

    Article  Google Scholar 

  43. Levy, R.A.; Nassau, K.: Reflow Mechanisms of Contact Vias in VLSI Process ing. J. Electrochem. Soc. 133 (1986) 1418–1424

    Google Scholar 

  44. Hashimoto, N. et al.: Glass Flow Mechanism of Phosphosilicate Glass and its Application in MOS Devices. Jap. J. Appl. Phys. 16 (1977) Suppl. 16–1, 73–77

    Google Scholar 

  45. Mercier, J.S.: Rapid Flow of Doped Glasses for VLSIC Fabrication. Solid State Technology (July 1987) 85–91

    Google Scholar 

  46. Roenigk, K.F.; Jensen, K.F.: Low Pressure CVD of Silicon Nitride. J. Electrochem. Soc. 134 (1987) 1777–1785

    Article  Google Scholar 

  47. Claasen, W.A.P. et al.: Influence of Deposition Temperature, Gas Pressure, Gas Phase Composition and RF Frequency on Composition and Mechanical Stress of Plasma Silicon Nitride Layers. J. Electrochem. Soc. 132 (1985) 893

    Article  Google Scholar 

  48. Claasen, W.A.P. et al.: Characterization of Plasma Silicon Nitride Layers. J. Electrochem. Soc. 130 (1983) 2419–2423

    Article  Google Scholar 

  49. Kapoor, V.J.; Bailey, R.S.: Hydrogen-related Memory Traps in Thin Silicon Nitride Films. J. Vac. Sci. Technol. A 1 (1983) 600–603

    Article  Google Scholar 

  50. Wolf, S.; Tauber, R.N.: Silicon Processing for the VLSI Era. Sunset Beach, Cal.: Lattice Press 1986

    Google Scholar 

  51. Makino, T.: Composition and Control by Source Gas Ratio in LPCVD SiN Z. J. Electrochem. Soc. 130 (1983) 450–455

    Article  Google Scholar 

  52. Kuiper, A.E.T. et al.: Deposition and Composition of Silicon Oxynitride Films. J. Vac. Sci. Technol. B 1 (1983) 62–66

    Article  Google Scholar 

  53. Denisse, C.M.M. et al.: Plasma-enhanced Growth and Composition of Silicon Oxynitride Films J Appl. Phys. 60 (1986) 2536–2542

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Seegebrecht, P., Bündgens, N., Schneider, R. (1991). CVD-Verfahren. In: Prozeßtechnologie. Mikroelektronik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09540-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09540-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-17670-1

  • Online ISBN: 978-3-662-09540-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics