Skip to main content

Thermische Oxidation

  • Chapter
Prozeßtechnologie

Part of the book series: Mikroelektronik ((MIKROELEKTRONIK))

  • 288 Accesses

Zusammenfassung

Ein wesentlicher Vorteil des Siliziums gegenüber anderen Halbleitermaterialien besteht darin, daß sich durch die thermische Oxidation auf einfache Weise eine stabile Oxidschicht herstellen läßt. Diese Schicht übernimmt während der Herstellung der integrierten Schaltungen die Funktion der Maskierung bei der lokalen Modifikation des Siliziums (Diffusionsbarriere) sowie die elektrische Isolation zwischen den Bauelementstrukturen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Ligenza, J.R.; Spitzer, W.G.: The Mechanism for Silicon Oxidation in Steam and Oxygen. J. Phys. Chem. Solids 14 (1960) 131–136

    Article  Google Scholar 

  2. Jorgensen, P.J.: Effect of an Electric Field on Silicon Oxidation. J. Chem. Phys. 37 (1962) 874–877

    Article  Google Scholar 

  3. Deal, B.E; Grove, A.S: General Relationship for the Thermal Oxidation of Silicon. J. Appl. Phys. 36 (1965) 3770–3778

    Article  Google Scholar 

  4. Wolters, D.R.: On the Oxidation Kinetics of Silicon: The Role of Water. J. Electrochem. Soc. 127 (1980) 2072–2082

    Article  Google Scholar 

  5. Massoud, H.Z.; Plummer, J.D.; Irene, E.A.: Thermal Oxidation of Silicon in Dry Oxygen: Accurate Determination of the Kinetic Rate Constants. J. Electrochem. Soc. 132 (1985) 1745–1753

    Article  Google Scholar 

  6. Naito, M.; Homma, H.; Momma, N: A Practical Model for Growth Kinetics of Thermal SiO2 on Silicon Applicable to a Wide Range of Oxide Thickness. Solid State Electronics 29 (1986) 885–891

    Article  Google Scholar 

  7. Blanc, J.: On Modeling the Oxidation of Silicon by Dry Oxygen. J. Electrochem. Soc. 133 (1986) 1981–1982

    Article  Google Scholar 

  8. Nicollian, E.H.; Reisman, A.: A New Model for the Thermal Oxidation Kinetics of Silicon. J. Electronic Materials 17 (1988) 263–272

    Article  Google Scholar 

  9. Revesz, A.G.; Mrstik, B.J.; Hughes, H.L.; McCarthy, D.: Structure of SiO2 Films on Silicon as Revealed by Oxygen Transport. J. Electrochem. Soc. 133 (1986) 586–592

    Article  Google Scholar 

  10. Han, C.J.; Helms, C.R.: Parallel Oxidation Mechanism for Si Oxidation in Dry 02. J. Electrochem. Soc. 134 (1987) 1297–1302

    Article  Google Scholar 

  11. Massoud, H.Z.; Plummer, J.D.; Irene, E.A.: Thermal Oxidation of Silicon in Dry Oxygen: Growth Rate Enhancement in the Thin Regime. J. Electrochem. Soc. 132 (1985) 2693–2700

    Article  Google Scholar 

  12. Murali, V.; Murarka, S.P.: Kinetics of Ultrathin Si02 Growth. J. Appl. Phys. 60 (1986) 2106–2114

    Article  Google Scholar 

  13. Burn, I.; Roberts, J.P.: Influence of Hydroxyl Content on the Diffusion of Water in Silica Glass. Physics and Chemnistry of Glasses 11 (1970) 106–114

    Google Scholar 

  14. Lie, L.N.; Razouk, R.R.; Deal, B.E.: High Pressure Oxidation of Silicon in Dry Oxygen. J. Electrochem. Soc. 129 (1982) 2828–2834

    Article  Google Scholar 

  15. Ho, C.; Plummer, J.D.: Si/Si02 Interface Oxidation Kinetics: A Physical Model for the Influence of High Substrate Doping Levels. J. Electrochem. Soc. 126 (1979) 1516–1522

    Article  Google Scholar 

  16. Irene, E.A.; Dong, D.W.: Silicon Oxidation Studies: The Oxidation of Heavely B- and P-Doped Single Crystal Silicon. J. Electrochem. Soc. 125 (1978) 1146–1151

    Article  Google Scholar 

  17. Revesz, A.G.; Evans, R.J.: Kinetics and Mechanism of Thermal Oxidation of Silicon with Special Emphasis on Impurity Effects. J. Phys. Chem. Solids 30 (1969) 551–564

    Article  Google Scholar 

  18. Deal, B.E.; Hess, D.W.; Plummer, J.D.; Ho, C.: Kinetics of the Thermal Oxidation of Silicon in 02/1120 and 02/C12 Mixtures. J. Electrochem. Soc. 125 (1978) 339–346

    Article  Google Scholar 

  19. Palik, E.D.: Handbook of Optical Constants of Solids. Academic Press. Inc. 1985

    Google Scholar 

  20. ] Br?unig, D.: Wirkung hochenergetischer Strahlung auf Halbleiterbauelemente. Berlin, Heidelberg, New York, London, Paris, Tokyo: Springer 1989

    Google Scholar 

  21. Physics and Technology. New York, Chichester, Brisbane, Toronto, Singapore: John Wiley and Sons 1982

    Google Scholar 

  22. Sze, S.M.: Physics of Semiconductor Devices, 2nd Edition. New York, Chichester, Brisbane, Toronto, Singapore: John Wiley and Sons 1981

    Google Scholar 

  23. Wolters, D.R.; van der Schoot, J.J.; Porter, T.; Verweij, J.F. (ed.): Damage Caused by Charge Injection. In: Insulating Films on Semiconductors. North-Holland 1983

    Google Scholar 

  24. Hearn, E.W.; Werner, D.J.; Doney, D.A.: Film-Induced Stress Model. J. Electrochem. Soc. 133 (1986) 1749–1751

    Article  Google Scholar 

  25. Bhattacharyya, A.; Vorst, C.; Carin, A.H.: A Two-Step Oxidation Process to Improve the Electrical Breakdown Properties of Thin Oxides. J. Electrochem. Soc. 132 (1985) 1900–1908

    Article  Google Scholar 

  26. EerNisse, E.P.: Stress in Thermal Si02 during growth. Appl. Phys. Lett. 35 (1979) 8–10

    Article  Google Scholar 

  27. EerNisse, E.P.; Derbenwick, G.F.: Viscous Shear Flow Model for MOS Device Radiation Sensitivity. IEEE Trans. Nucl. Science NS-23 (1976) 1534–1539

    Google Scholar 

  28. Chin, D.; Oh, S.Y.; Dutton, R.W.: A General Solution Method for Two-Dimensional Nonplanar Oxidation. IEEE Electr. Dev. ED-30 (1983) 993–998

    Google Scholar 

  29. Lin, A.M.; Dutton, R.W.; Antoniades, D.A.; Tiller, W.A.: The Growth of Oxidation Stacking Faults and the Point Defect Generation at Si-Sí02 Interface during Thermal Oxidation of Silicon. J. Electrochem. Soc. 128 (1981) 1121–1130

    Article  Google Scholar 

  30. ] Declerck, G.J.: The Role and Effects of Cl in the Thermal Oxidation of Silicon. In: Solid State Devices 1979, Institute of Physics Conference Series No. 53 (1979) 133–153

    Google Scholar 

  31. Weber, E.R.: Transition Metals in Silicon. Appl. Phys. A 30 (1983) 1–22

    Article  Google Scholar 

  32. Foster, B.D.; ‘Pressler, R.E.: Silicon Processing with Silicon Carbide Furnace Components. Solid State Technology (Oct. 1984) 143–146

    Google Scholar 

  33. Moss, S.J.; Ledwith,A. (Eds.): The Chemistry of the Semiconductor Industry. Glasgow, London: Blackie 1987, S. 23

    Google Scholar 

  34. ] Westdeutsche Quarzschmelze, Geesthacht; Firmenschrift: Quarzglas für die Halbleiterindustrie, Neue Qualit?t 214LS

    Google Scholar 

  35. ] Norton, Worcester; Firmenschrift: Experimental Results of CRYSTAR XP, Form 4799–014

    Google Scholar 

  36. ] Heraeus Quarzschmelze, Hanau; Firmenschrift: Quarzglas und Quarzgut, Q-A 1/112.2

    Google Scholar 

  37. Schmidt, P.F.: A Neutron Activation Analysis Study of the Sources of Transition Group Metal Contamination in the Silicon Device Manufacturing Process. J. Electrochem. Soc. 128 (1981) 630–637

    Article  Google Scholar 

  38. Schmidt, P.F.: Contamination-free High Temperature Treatment of Silicon or other Materials. J. Electrochem. Soc. 130 (1983) 196–199

    Article  Google Scholar 

  39. ] Eisele, K.M.: Stabilized Fused-Quartz Tubes with Reduced Sodium Diffusion for Semiconductor Device Technology. J. Electrochem. Soc. 125 (1978) 11881190

    Google Scholar 

  40. Thomas, R.C.: Noncontaminating Gas Distribution Systems. Solid State Technology (Sept. 1985) 153–158

    Google Scholar 

  41. Accomazzo, M.A. et al.: Ultrahigh Efficiency Membrane Filters for Semiconductor Process Gases. Solid State Technology (March 1984) 141–146

    Google Scholar 

  42. Janssens, E.J.; Declerck, G.J.: The Use of 1.1.1. Trichloroethane as an Optimized Additive to Improve the Silicon Thermal Oxidation Technology. J. Electrochem. Soc. 125 (1978)

    Google Scholar 

  43. Waugh, A.; Foster, B.D.: Design and Performance of Silicon Carbide Cantilever Paddles in Semiconductor Diffusion Furnaces. Am. Ceramic Soc. Bull. 64 (1985) 550–554

    Google Scholar 

  44. Tay, S.P.; Ellul, J.P.: High Pressure Technology for Silicon IC Fabrication. Semiconductor International (May 1986)

    Google Scholar 

  45. Hayafuji, Y.; Kajiwara, K.: Nitridation of Silicon and Oxidized Silicon. J. Electrochem. Soc. 129 (1982) 2102–2108

    Article  Google Scholar 

  46. of B, BF2 and As Ions Implanted into Silicon. Nucl. Instr. Meth. Phys. Res. B 7 /8 (1985) 251–260

    Google Scholar 

  47. Kato, J.; Iwamatsu, S.: Rapid Annealing using Halogen Lamps. J. Electrochem. Soc. (1984) 1145–1152

    Google Scholar 

  48. Kernani, A. et al.: Process Control of Titanium Silicide Formation using Rapid Thermal Processing. Proc. 6th Int. Conf. Ion Implant 1986

    Google Scholar 

  49. Mercier, J.S.: Rapid Flow of Doped Glasses for VLSI Fabrication. Solid State Technol. (July 1987) 85–90

    Google Scholar 

  50. Faith, T.J.; Wu, C.P.: Elimination of Hillocks on Al-Si Metallization by FastHeat-Pulse Alloying. Appl. Phys. Lett. 45 (1984) 470–472

    Article  Google Scholar 

  51. Nulman, J. et al.: Rapid Thermal Processing of Thin Gate Dielectrics. Oxidation of Silicon. IEEE El. Dev. Lett. EDL-6 (1985) 205–207

    Google Scholar 

  52. van Houtum, H.J.W.; Jonkers, A.G.M.: Temperature Control in the Heatpulse 610 System. Nat.Lab. Technical Note 292/86, Philips Research Laboratories, Eindhoven 1986

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Seegebrecht, P., Bündgens, N. (1991). Thermische Oxidation. In: Prozeßtechnologie. Mikroelektronik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09540-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09540-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-17670-1

  • Online ISBN: 978-3-662-09540-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics